Exposure of Exiguobacterium spp. to dengue vector, Aedes aegypti reduces growth and reproductive fitness
Tóm tắt
Aedes aegypti is a major insect vector because it transmits dreadful viruses as adults that cause disease in humans and other vertebrates. The use of mosquito’s microbiota has shown great potential impacts on vector control and mosquito reproductive competence. The present study aimed to examine the resident bacteria of mosquitoes which are used as a potent range to reduce the A. aegypti fitness. Isolated resident-bacterial strains from blood-fed Aedes species were characterized using gene sequencing and phylogenetic analysis, to assess the inhabitant bacterial strains survival rate in A. aegypti midgut, instar developmental duration, malformation and reproductive competence. The genetic distinctiveness of isolated bacterial strains belong to the genus Exiguobacterium spp. and further non-redundant nucleotide database search revealed that the species of effective strains were E. aestuarii (MN629357) and E. profundum (MN625885). Exposure of the freshly hatched larvae with these bacteria cell densities extended the developmental duration. For instance, exposure of A. aegypti larva with 0.42 × 108, 0.84 × 108 and 1.68 × 108 cells/mL of E. aestuarii extended the total developmental duration to 11.41, 14.29 and 14.78 days, respectively. It also reduced the fecundity and hatchability of A. aegypti female, with exposure to these bacteria, from 1033.33 eggs/10 females in the control series to 656.67 eggs/10 females. These present findings indicate that the resident-bacterial strains from blood-fed mosquito not only extend the larval durations but also rendered the A. aegypti females sterile to various extents.
Tài liệu tham khảo
Balestrino, F., Medici, A., Candini, G., Carrieri, M., Maccagnani, B., Calvitti, M., Maini, S., & Bellini, R. (2010). γ ray dosimetry and mating capacity studies in the laboratory on Aedes albopictus males. Journal of Medical Entomology, 47, 581–591.
Barraud, P. J. (1934). The fauna of British India including Ceylon and Burma. Diptera. Volume V. Family Culicidae. Tribes Megarhinini and Culicini in Salinas, Puerto Rico. Journal of Medical Entomology, 43, 484–492.
Bhatt, S., Gething, P. W., Brady, O. J., Messina, J. P., Farlow, A. W., Moyes, C. L., Drake, J. M., Brownstein, J. S., Hoen, A. G., & Sankoh, O. (2013). The global distribution and burden of dengue. Nature, 496, 504–507.
Boyer, S., Gilles, J., Merancienne, D., Lempérière, G., & Fontenille, D. (2011). Sexual performance of male mosquito Aedes albopictus. Medical and Veterinary Entomology, 25, 454–459.
Brelsfoard, C. L., & Dobson, S. L. (2011). Wolbachia effects on host fitness and the influence of male aging on cytoplasmic incompatibility in Aedes polynesiensis (Diptera: Culicidae). Journal of Medical Entomology, 48, 1008–1015.
Brelsfoard, C. L., St Clair, W., & Dobson, S. L. (2009). Integration of irradiation with cytoplasmic incompatibility to facilitate a lymphatic filariasis vector elimination approach. Parasites & Vectors, 2, 38.
Cheng, A., Liu, C.Y., Tsai, H.Y., Hsu, M.S., Yang, C.J., Huang, Y.T., Liao, C.H., & Hsueh, P.R. (2013). Bacteremia caused by Pantoea agglomerans at a medical center in Taiwan, 2000–2010. Journal of Microbiology, Immunology, and Infection, 46, 187–194.
Cirimotich, C. M., Ramirez, J. L., & Dimopoulos, G. (2011). Native microbiota shape insect vector competence for human pathogens. Cell Host & Microbe, 10, 307–310.
Coon, K. L., Valzania, L., McKinney, D. A., Vogel, K. J., Brown, M. R., & Strand, M. R. (2017). Bacteria-mediated hypoxia functions as a signal for mosquito development. Proceedings of the National Academy of Sciences, 114, E5362–E5369.
Devine, G. J., Perea, E. Z., Killeen, G. F., Stancil, J. D., Clark, S. J., & Morrison, A. C. (2009). Using adult mosquitoes to transfer insecticides to Aedes aegypti larval habitats. Proceedings of the National Academy of Sciences, 106, 11530–11534.
Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J.-P., & Raoult, D. (2000). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. Journal of Clinical Microbiology, 38, 3623–3630.
Emami, S. N., Lindberg, B. G., Hua, S., Hill, S. R., Mozuraitis, R., Lehmann, P., Birgersson, G., Borg-Karlson, A.-K., Ignell, R., & Faye, I. (2017). A key malaria metabolite modulates vector blood seeking, feeding, and susceptibility to infection. Science, 355(6329), 1076–1080.
Joubert, D. A., Walker, T., Carrington, L. B., De Bruyne, J. T., Kien, D. H. T., Hoang, N. L. T., Chau, N. V. V., Iturbe-Ormaetxe, I., Simmons, C. P., & O’Neill, S. L. (2016). Establishment of a Wolbachia superinfection in Aedes aegypti mosquitoes as a potential approach for future resistance management. PLOS Pathogens, 12, 66.
Kamtchum-Tatuene, J., Makepeace, B. L., Benjamin, L., Baylis, M., & Solomon, T. (2017). The potential role of Wolbachia in controlling the transmission of emerging human arboviral infections. Current Opinion in Infectious Diseases, 30, 108.
Kenny, F., Xu, J., Millar, B. C., McClurg, R. B., & Moore, J. E. (2006). Potential misidentification of a new Exiguobacterium sp. as Oerskovia xanthineolytica isolated from blood culture. British Journal of Biomedical Science, 63, 86–89.
Keynan, Y., Weber, G., & Sprecher, H. (2007). Molecular identification of Exiguobacterium acetylicum as the aetiological agent of bacteraemia. Journal of Medical Microbiology, 56, 563–564.
Lambrechts, L., & Failloux, A. B. (2012). Vector biology prospects in dengue research. Memórias Do Instituto Oswaldo Cruz, 107(8), 1080–1082.
Madakacherry, O., Lees, R. S., & Gilles, J. R. L. (2014). Aedes albopictus (Skuse) males in laboratory and semi-field cages: Release ratios and mating competitiveness. Acta Tropica, 132, S124–S129.
Mishra, N., Shrivastava, N. K., Nayak, A., & Singh, H. (2018). Wolbachia: A prospective solution to mosquito borne diseases. International Journal of Mosquito Research, 5(2), 1–8.
Mitraka, E., Stathopoulos, S., Siden-Kiamos, I., Christophides, G. K., & Louis, C. (2013). Asaia accelerates larval development of Anopheles gambiae. Pathogens and Global Health, 107, 305–311.
Murray, N. E. A., Quam, M. B., & Wilder-Smith, A. (2013). Epidemiology of dengue: Past, present and future prospects. Clinical Epidemiology, 5, 299.
Paul, A. M., Shi, Y., Acharya, D., Douglas, J. R., Cooley, A., Anderson, J. F., Huang, F., & Bai, F. (2014). Delivery of antiviral small interfering RNA with gold nanoparticles inhibits dengue virus infection in vitro. Journal of General Virology, 95, 1712.
Ponnusamy, L., Schal, C., Wesson, D. M., Arellano, C., & Apperson, C. S. (2015). Oviposition responses of Aedes mosquitoes to bacterial isolates from attractive bamboo infusions. Parasites & Vectors, 8, 486.
Rajagopal, G., & Ilango, S. (2020). Native Bacillus strains from infected insects : A potent bacterial agent for controlling mosquito vectors Aedes aegypti and Culex quinquefasciatus. International Journal of Mosquito Research, 7(2), 51–56.
Rajagopal, G., Jeyavani, J., & Ilango, S. (2020). Larvicidal and histopathological efficacy of inhabitant pathogenic bacterial strains to reduce the dengue vector competence. Pest Management Science, 76(11), 3587–3595.
Sambrook, J., Russell, D. W., Sambrook, J. (2006). The condensed protocols from molecular cloning: A laboratory manual (No. Sirsi) i9780879697723).
Saxena, R. C., Harshan, V., Saxena, A., Sukumaran, P., Sharma, M. C., & Kumar, M. L. (1993). Larvicidal and chemosterilant activity of Annona squamosa alkaloids against Anopheles stephensi. Journal of the American Mosquito Control Association, 9(1), 84–7.
Souza, R., Virginio, F., Suesdek, L., Barufi, J. B., & Genta, F. A. (2019). Microorganism-based larval diets affect mosquito development, size and nutritional reserves in the yellow fever mosquito Aedes aegypti (Diptera: Culicidae). Frontiers in Physiology, 10, 152.
Tena, D., Martínez, N. M., Casanova, J., García, J. L., Román, E., Medina, M. J., & Sáez-Nieto, J. A. (2014). Possible Exiguobacterium sibiricum skin infection in human. Emerging Infectious Diseases, 20, 2178.
Trexler, J. D., Apperson, C. S., Zurek, L., Gemeno, C., Schal, C., Kaufman, M., Walker, E., Watson, D. W., & Wallace, L. (2003). Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). Journal of Medical Entomology, 40, 841–848.
Valzania, L., Coon, K. L., Vogel, K. J., Brown, M. R., & Strand, M. R. (2018). Hypoxia-induced transcription factor signaling is essential for larval growth of the mosquito Aedes aegypti. Proceedings of the National Academy of Sciences, 115, 457–465.
Vishnivetskaya, T. A., Kathariou, S., & Tiedje, J. M. (2009). The Exiguobacterium genus: Biodiversity and biogeography. Extremophiles, 13, 541–555.
Wu, P.-C., Guo, H.-R., Lung, S.-C., Lin, C.-Y., & Su, H.-J. (2007). Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Tropica, 103, 50–57.
Zhang, D., Lees, R. S., Xi, Z., Bourtzis, K., & Gilles, J. R. L. (2016). Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple Wolbachia-infected Aedes albopictus males under semi-field conditions. PLoS ONE, 11(3), e0151864.
Zhang, D., Zheng, X., Xi, Z., Bourtzis, K., & Gilles, J. R. L. (2015). Combining the sterile insect technique with the incompatible insect technique: I-impact of Wolbachia infection on the fitness of triple-and double-infected strains of Aedes albopictus. PLoS One, 10(4), e0121126.
Zug, R., & Hammerstein, P. (2012). Still a host of hosts for Wolbachia: analysis of recent data suggests that 40% of terrestrial arthropod species are infected. PLoS ONE, 7(6), 38–544.