Các yếu tố tiếp xúc so với khả năng sinh khả dụng trong con đường tiêu thụ đất và bụi: Đánh giá so sánh về các yếu tố không chắc chắn sử dụng mô phỏng MC2D trong kịch bản tiếp xúc với arsenic

F. Barrio-Parra1, H. Serrano García1, M. Izquierdo-Díaz1, E. De Miguel1
1Prospecting & Environment Laboratory (PROMEDIAM), Universidad Politécnica de Madrid, Madrid, Spain

Tóm tắt

Đánh giá rủi ro sức khỏe con người (HHRA) là một phương pháp phổ biến được áp dụng để đưa ra quyết định về tình trạng môi trường của các địa điểm bị ảnh hưởng bởi các chất độc hại. Những kết luận của nó bị ảnh hưởng bởi sự biến động và không chắc chắn của các biến đầu vào trong mô hình HHRA. Mục tiêu của công việc này là áp dụng một thuật toán dựa trên mô phỏng Monte Carlo 2D để tích hợp sự biến động và không chắc chắn của các yếu tố tiếp xúc, nồng độ và khả năng sinh khả dụng, được báo cáo bởi nhiều nguồn thông tin khác nhau, nhằm đánh giá và so sánh ảnh hưởng của chúng đối với kết quả rủi ro. Phương pháp này được áp dụng cho một nghiên cứu trường hợp cụ thể về sự tiếp xúc của trẻ em với arsenic từ việc tiêu thụ đất do vô tình trong một khu dân cư ở thành phố Madrid (Tây Ban Nha) bằng cách kết hợp thông tin từ 12 nghiên cứu. Việc xem xét sự biến động và không chắc chắn của các tham số tiếp xúc trong Đánh giá Rủi ro Cơ bản (BRA, xác định) đã dẫn đến việc giảm lớn hơn giá trị số của các ước tính rủi ro so với việc chỉ xem xét yếu tố khả năng sinh khả dụng. Kết quả của Đánh giá Rủi ro Xác suất (PRA) cho thấy rằng phân phối rủi ro nhạy cảm hơn với sự biến động của tỷ lệ tiêu thụ đất vô tình và tổng nồng độ arsenic hơn là các biến khác như khả năng sinh khả dụng. Trong trường hợp nghiên cứu này, sự không chắc chắn được đưa ra khi sử dụng các yếu tố tiếp xúc tối đa hợp lý "mặc định" trong mô hình HHRA và sự biến động của thuật ngữ nồng độ dẫn đến các ước tính rủi ro lớn hơn, ít nhất trong phạm vi những gì được tạo ra bằng cách loại bỏ thuật ngữ khả năng sinh khả dụng. Do đó, việc đưa vào khả năng sinh khả dụng, một mình, là chưa đủ để cải thiện HHRA vì việc lựa chọn các yếu tố tiếp xúc có thể ảnh hưởng đáng kể đến các ước tính rủi ro cho con đường tiêu thụ đất. Tuy nhiên, ở các địa điểm khác hoặc cho các chất ô nhiễm khác, vai trò của sự không chắc chắn liên quan đến phần khả năng sinh khả dụng có thể rõ ràng hơn. Phương pháp được áp dụng trong công việc này có thể hữu ích trong việc cập nhật các yếu tố tiếp xúc để giảm thiểu sự không chắc chắn trong HHRA.

Từ khóa

#Đánh giá rủi ro sức khỏe con người #mô phỏng Monte Carlo 2D #khả năng sinh khả dụng #tiếp xúc với arsenic #tiêu thụ đất

Tài liệu tham khảo

Barrio-Parra F, De Miguel E, Lázaro-Navas S, Gómez A, Izquierdo-Díaz M (2018) Indoor dust metal loadings: a human health risk assessment. Exposure and Health 10:41–50. https://doi.org/10.1007/s12403-017-0244-z Barrio-Parra F, Izquierdo-Díaz M, Dominguez-Castillo A, Medina R, De Miguel E (2019) Human-health probabilistic risk assessment: the role of exposure factors in an urban garden scenario. Landsc Urban Plan 185:191–199. https://doi.org/10.1016/j.landurbplan.2019.02.005 Burmaster DE, Anderson PD (1994) Principles of good practice for the use of Monte Carlo techniques in human health and ecological risk assessments. Risk Anal 14:477–481. https://doi.org/10.1111/j.1539-6924.1994.tb00265.x Burmaster DE, Crouch EAC (1997) Lognormal distributions for body weight as a function of age for males and females in the United States, 1976–1980. Risk Anal 4:499–505 Calabrese EJ, Stanek, EJ Gilbert, CE (1991) Evidence of Soil-Pica Behaviour and Quantification of Soil Ingested. Hum Exp Toxicol 10(4):245–249. https://doi.org/10.1177/096032719101000403 Cao S, Duan X, Zhao X, Chen Y, Wang B, Sun C, Zheng B, Wei F (2016) Health risks of children’s cumulative and aggregative exposure to metals and metalloids in a typical urban environment in China. Chemosphere 147:404–411. https://doi.org/10.1016/j.chemosphere.2015.12.134 Carrascosa A, Fernández García JM, Fernández Ramos C, Ferrández Longás A, López-Siguero JP, Sánchez González E, Sobradillo Ruiz B, Yeste Fernández D (2008a) Estudio transversal español de crecimiento 2008. Parte II: Valores de talla, peso e índice de masa corporal desde el nacimiento a la talla adulta. An Pediatr 68:552–569. https://doi.org/10.1157/13123287 Carrascosa A, Fernández JM, Fernández C, Ferrández A, López-Siguero JP, Sánchez E, Sobradillo B, Yeste YD (2008b) Estudios españoles de crecimiento 2008. Nuevos Patrones Antropométricos Endocrinol y Nutr 55:484–506. https://doi.org/10.1016/S1575-0922(08)75845-5 Das S, Jean JS, Kar S (2013) Bioaccessibility and health risk assessment of arsenic in arsenic-enriched soils, Central India. Ecotoxicol Environ Saf 92:252–257. https://doi.org/10.1016/j.ecoenv.2013.02.016 Davis S, Waller P, Davis S, Waller P, Buschbom R, Ballou J, White P (1990) Quantitative estimates of soil ingestion in normal children between the ages of 2 and 7 years: Population-based estimates using aluminum, silicon, and titanium as soil tracer elements. Arch Environ Health 45:112–122. https://doi.org/10.1080/00039896.1990.9935935 de Lima Brum R, Penteado JO, Ramires PF, Girónes MCR, Mondelongo SP, del Carmén Rubio Armendáriz, M., dos Santos, M., da Silva Júnior, F.M.R., (2022) Recommended guidance and checklist for human health risk assessment of metal(loid)s in soil. Expo Heal 14:295–304. https://doi.org/10.1007/s12403-021-00440-6 De Miguel E, Iribarren I, Chacón E, Ordoñez A, Charlesworth SM (2007) Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 66:505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065 De Miguel E, Mingot J, Chacón E, Charlesworth SM (2012) The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environ Geochem Health 34:677–687. https://doi.org/10.1007/s10653-012-9486-7 De Miguel E, Izquierdo-Díaz M, Gómez A, Mingot J, Barrio-Parra F (2017) Risk assessment from exposure to arsenic, antimony and selenium in urban gardens (Madrid, Spain). Environ Toxicol Chem 36:544–550. https://doi.org/10.1002/etc.3569 De Miguel E, Ordóñez A, Barrio-Parra F, Izquierdo-Díaz M, Álvarez R, Mingot J, Charlesworth SM (2019) Bioaccessibility of trace elements in urban environments. Urban pollution: science and management. Wiley, Chichester, pp 107–113 Denys S, Caboche J, Feidt C, Hazebrouck B, Dor F, Dabin C, Floch-Barneaus A, Tack K (2009) Biodisponibilité et bioaccessibilité des métaux et metalloïdes des sols pollués pour la voie orale chez l’homme. Environnement, Risques & Santé 8:433–438 Dong Z, Liu Y, Duan L, Bekele D, Naidu R (2015) Uncertainties in human health risk assessment of environmental contaminants: a review and perspective. Environ Int 85:120–132. https://doi.org/10.1016/j.envint.2015.09.008 Dourson ML, Gadagbui B, Griffin S, Garabrant DH, Haws LC, Kirman C, Tohyama C (2013) The importance of problem formulations in risk assessment: a case study involving dioxin-contaminated soil. Regul Toxicol Pharmacol 66:208–216. https://doi.org/10.1016/j.yrtph.2013.03.010 Dudka S, Miller WP (1999) Permissible concentrations of arsenic and lead in soils based on risk assessment. Water Air Soil Pollut 113:127–132. https://doi.org/10.1023/A:1005028905396 Durá Travé T (2012) ¿Son válidas las curvas y tablas de crecimiento españolas actuales? Nutr Hosp 27:244–251. https://doi.org/10.3305/nh.2012.27.1.5474 Filzmoser, P., 2015. StatDA: Statistical Analysis for Environmental Data. R package version 1.6.9. https://CRAN.R-project.org/package=StatDA Frey HC, Rhodes DS (1996) Characterizing, simulating, and analyzing variability and uncertainty: an illustration of methods using an air toxics emissions example. Hum Ecol Risk Assess 2:762–797. https://doi.org/10.1080/10807039609383650 Ge Y, Murray P, Sauvé S, Hendershot W (2002) Low metal bioavailability in a contaminated urban site. Environ Toxicol Chem 21:954–961 Glorennec P, Lucas JP, Mandin C, Le Bot B, Le B (2012) French children’s exposure to metals via ingestion of indoor dust, outdoor playground dust and soil: contamination data. Environ Int 45:129–134. https://doi.org/10.1016/j.envint.2012.04.010 Goerlich Gisbert, F.J., 2012. Esperanza de vida y causas de muerte. Un análisis de descomposición (1975 - 2009), Documentos de Trabajo. Bilbao (SPAIN). Guney M, Welfringer B, Repentigny CD, Zagury GJ (2013) Children’s exposure to mercury-contaminated soils: exposure assessment and risk characterization. Arch Environ Contam Toxicol 65:345–355. https://doi.org/10.1007/s00244-013-9891-7 Hamad SH, Schauer JJ, Shafer MM, Al-Rheem EA, Skaar PS, Heo J, Tejedor-Tejedor I (2014) Risk assessment of total and bioavailable potentially toxic elements (PTEs) in urban soils of Baghdad-Iraq. Sci Total Environ 494–495:39–48. https://doi.org/10.1016/j.scitotenv.2014.06.006 Hamby DM (1994) A review of techniques for parameter sensitivity analysis of environmental models. Environ Monit Assess 32:135–154. https://doi.org/10.1007/BF00547132 Hammonds JS, Hoffman FO, Bartell SM (1994) An introductory guide to uncertainty analysis in environmental and health risk assessment. US DOE. https://doi.org/10.2172/10127301 Han Q, Wang M, Cao J, Gui C, Liu Yanping, He X, He Y, Liu Yang (2020) Health risk assessment and bioaccessibilities of heavy metals for children in soil and dust from urban parks and schools of Jiaozuo China. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2019.110157 Harris G, Horn R Van (1996) Use of Monte Carlo Methods in Environmental Risk Assessment at the INEL: Applications and issues. Lockheed Idaho Technologies Co., Idaho Falls: 74 p. https://doi.org/10.2172/266659 Iman RL, Helton JC (1988) An investigation of uncertainty and sensitivity analysis techniques for computer models. Risk Anal 8:71–90. https://doi.org/10.1111/j.1539-6924.1988.tb01155.x International Programme on Chemical Safety, 2008. Guidance document on characterizing and communicating uncertainty in exposure assessment, harmonization of approaches to the assessment of risk from exposure to chemicals. Geneva. Iribarren I, Chacón E, De Miguel E (2009) A Bayesian approach to probabilistic risk assessment in municipal playgrounds. Arch Environ Contam Toxicol 56:165–172. https://doi.org/10.1007/s00244-008-9161-2 Izquierdo-Díaz M, De Miguel E, Ortega MF, Mingot J (2015) Bioaccessibility of metals and human health risk assessment in community urban gardens. Chemosphere 135:312–318. https://doi.org/10.1016/j.chemosphere.2015.04.079 Jager T, Vermeire TG, Rikken MG, van der Poel P (2001) Opportunities for a probabilistic risk assessment of chemicals in the European Union. Chemosphere 43:257–264. https://doi.org/10.1016/S0045-6535(00)00087-4 Jang HK, Kim JY, Lee JK (2009) Radiological risk assessment for field radiography based on two dimensional Monte Carlo analysis. Appl Radiat Isot 67:1521–1525. https://doi.org/10.1016/j.apradiso.2009.02.076 Jiménez-Oyola S, Chavez E, García-Martínez MJ, Ortega MF, Bolonio D, Guzmán-Martínez F, García-Garizabal I, Romero P (2021) Probabilistic multi-pathway human health risk assessment due to heavy metal(loid)s in a traditional gold mining area in Ecuador. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2021.112629 Li D, Li L (2021) Human chemical exposure from background emissions in the United States and the implication for quantifying risks from marginal emission increase. Toxics. https://doi.org/10.3390/toxics9110308 Li Q, Li F, Xiao MS, Cai Y, Xiong L, Huang JB, Fu JT (2018) Bioaccessibility and human health risk assessment of lead in soil from Daye City. IOP Conf Ser. https://doi.org/10.1088/1755-1315/108/4/042116 Liang CP, Jang CS, Chen JS, Wang SW, Lee JJ, Liu CW (2013) Probabilistic health risk assessment for ingestion of seafood farmed in arsenic contaminated groundwater in Taiwan. Environ Geochem Health 35:455–464. https://doi.org/10.1007/s10653-012-9507-6 Ljung K, Oomen A, Duits M, Selinus O, Berglund M (2007) Bioaccessibility of metals in urban playground soils. J. . Environ Sci Heal Part A 42:1241–1250. https://doi.org/10.1080/10934520701435684 Martínez-Sánchez MJ, Martínez-López S, Martínez-Martínez LB, Pérez-Sirvent C (2013) Importance of the oral arsenic bioaccessibility factor for characterising the risk associated with soil ingestion in a mining-influenced zone. J Environ Manage 116:10–17. https://doi.org/10.1016/j.jenvman.2012.11.009 De Miguel, E., Callaba, A., Arranz, J.C.J.C., Cala, V., Chacón, E., Gallego, E., Alberruche, E., Alonso, C., Fernández-Canteli, P., Iribarren, I., Palacios, H., Fdez.-Canteli, P., 2002. Determinación de niveles de fondo y niveles de referencia de metales pesados y otros elementos traza en suelos de la Comunidad de Madrid, Medio ambiente. Terrenos contaminados no2. Instituto Geológico y Minero de España. Millard SP (2013) EnvStats An R package for environmental statistics. Springer, New York Mingot J, De Miguel E, Chacón E (2011) Assessment of oral bioaccessibility of arsenic in playground soil in Madrid (Spain): a three-method comparison and implications for risk assessment. Chemosphere 84:1386–1391. https://doi.org/10.1016/j.chemosphere.2011.05.001 Moya J, Philips L (2014) A review of soil and dust ingestion studies for children. J Expo Sci Environ Epidemiol 24:545–554 Novomestky F, Nadarajah S (2016) truncdist: Truncated Random Variables. R package version 1.0-2. https://CRAN.R-project.org/package=truncdist Oomen AG, Rompelberg CJM, Bruil MA, Dobbe CJG, Pereboom DPKH, Sips AJAM (2003) Development of an in vitro digestion model for estimating the bioaccessibility of soil contaminants. Arch Environ Contam Toxicol 44:281–287. https://doi.org/10.1007/s00244-002-1278-0 Oregon Department of Environmental Quality, ODEQ (1999) Guidance for Use of Probabilistic Analysis in Human Health Risk. Oregon Department of Environmental Quality, Waste Management & Cleanup Division, Cleanup Policy & Program Development Section. Portland, Oregon: 158 p. https://digital.osl.state.or.us/islandora/object/osl:21017 Penteado JO, de Lima Brum R, Ramires PF, Garcia EM, dos Santos M, da Silva Júnior FMR (2021) Health risk assessment in urban parks soils contaminated by metals, Rio Grande city (Brazil) case study. Ecotoxicol Environ Saf. https://doi.org/10.1016/j.ecoenv.2020.111737 Pouillot R, Delignette-Muller ML (2010) Evaluating variability and uncertainty separately in microbial quantitative risk assessment using two R packages. Int J Food Microbiol 142:330–340. https://doi.org/10.1016/j.ijfoodmicro.2010.07.011 R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ Rajasekhar B, Nambi IM, Govindarajan SK (2018) Human health risk assessment of ground water contaminated with petroleum PAHs using Monte Carlo simulations: a case study of an Indian metropolitan city. J Environ Manage 205:183–191. https://doi.org/10.1016/j.jenvman.2017.09.078 Rasmussen PE, Beauchemin S, Nugent M, Dugandzic R, Lanouette M, Chénier M (2008) Influence of matrix composition on the bioaccessibility of copper, zinc, and nickel in urban residential dust and soil. Hum Ecol Risk Assess an Int J 14:351–371. https://doi.org/10.1080/10807030801934960 Ruby MV, Schoof R, Brattin W, Goldade M, Post G, Harnois M, MOsby E, Casteel SW, Berti W, Carpenter M, Edwards D, Cragin D, Chappell W (1999) Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environ Sci Technol 33:3697–3705. https://doi.org/10.1021/es990479z Sadeghfam S, Abdi M, Khatibi R, Nadiri AA (2021) An investigation into uncertainties within human health risk assessment to gain an insight into plans to mitigate impacts of arsenic contamination. J Clean Prod 311:127667. https://doi.org/10.1016/j.jclepro.2021.127667 Simon TW (1999) Two-dimensional Monte Carlo simulation and beyond: a comparison of several probabilistic risk assessment methods applied to a superfund site. Hum Ecol Risk Assess 5:823–843. https://doi.org/10.1080/10807039.1999.9657762 Stanek EJ, Calabrese EJ (1995) Soil ingestion estimates for use in site evaluations based on the best tracer method. Hum Ecol Risk Assess an Int J 1:133–157. https://doi.org/10.1080/10807039509379998 Stanek EJ, Calabrese EJ, Xu B (2012) Meta-analysis of mass-balance studies of soil ingestion in children. Risk Anal 32:433–447. https://doi.org/10.1111/j.1539-6924.2011.01673.x Stanfield Z, Addington CK, Dionisio KL, Lyons D, Tornero-Velez R, Phillips KA, Buckley TJ, Isaacs KK (2021) Mining of consumer product ingredient and purchasing data to identify potential chemical coexposures. Environ Health Perspect 129:1–14. https://doi.org/10.1289/EHP8610 USEPA (1989) Risk assessment: guidance for superfund. In: Human Health Evaluation Manual (Part A), Interim Final, vol 1. Office of Emergency and Remedial Response, United States Environmental Protection Agency, Washington DC. https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf USEPA (1991) Risk Assessment Guidance for Superfund. Hum Heal Eval Man (Part B, Dev Risk-based Prelim Remediat Goals) I:54 USEPA (1992) Supplemental guidance to RAGS: calculating the concentration term. Interim Bull 9285:7–08I USEPA (1997) Guiding Principles for Monte Carlo Analysis, Risk Assessment Forum. United States Environmental Protection Agency, Washington DC. https://www.epa.gov/sites/default/files/2014-11/documents/montecar.pdf USEPA (2001) Risk assessment guidance for superfund (RAGS) volume III - Part A: process for conducting probabilistic risk assessment, appendix B. Off. Emerg. Remedial Response U.S. Environ Prot Agency III:1–385 USEPA (2011a) Exposure factors handbook 2011 edition EPA/600/R-090/052F. U.S. Environmental Protection Agency, Washington USEPA (2011b) Lifetime (Chapter 18). Exposure factors handbook 2011 edition EPA/600/R-090/052F. U.S. Environmental Protection Agency, Washington USEPA (2012) Standard Operating Procedure for an In Vitro Bioaccessibility Assay for Lead in Soil. United States Environmental Protection Agency; Washington, DC. https://semspub.epa.gov/work/HQ/174533.pdf USEPA (2013) ProUCL 5.0 [WWW Document]. URL http://www2.epa.gov/land-research/proucl-software USEPA (2014a) OSWER Directive 9200.1-120. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. United States Environmental Protection Agency; Washington, DC. https://www.epa.gov/sites/default/files/2015-11/documents/oswer_directive_9200.1-120_exposurefactors_corrected2.pdf USEPA (2014b) Risk Assessment Forum White Paper: Probabilistic Risk Assessment Methods and Case Studies. Office of the Science Advisor; United States Environmental Protection Agency; Washington, DC. https://www.epa.gov/sites/default/files/2014-12/documents/raf-pra-white-paper-final.pdf USEPA (2017) Update for Chapter 5 of the Exposure Factors Handbook - Soil and Dust Ingestion. Office of Research and Development. United States Environmental Protection Agency Washington, DC. https://www.epa.gov/sites/default/files/2018-01/documents/efh-chapter05_2017.pdf USEPA (2022) Integrated risk information system (IRIS) [WWW Document]. URL http://www.epa.gov/iris/ Vadali M, Ramachandran G, Mulhausen J (2009) Exposure modeling in occupational hygiene decision making. J Occup Environ Hyg 6:353–362. https://doi.org/10.1080/15459620902855161 Wang Y, Zhu G, Engel B, Wu Y (2020) Probabilistic human health risk assessment of arsenic under uncertainty in drinking water sources in Jiangsu Province. China Environ Geochem Health 42:2023–2037. https://doi.org/10.1007/s10653-019-00476-3 Wragg J, Cave M, Taylor H, Basta N, Brandon E, Casteel S, Gron C, Oomen A, Van de Wiele T (2009) Inter-laboratory trial of a unified bioaccessibility testing procedure. British Geological Survey, Nottingham, p 90 Wu Y, Hoffman FO, Apostoaei AI, Kwon D, Thomas BA, Glass R, Zablotska LB (2019) Methods to account for uncertainties in exposure assessment in studies of environmental exposures. Environ Heal A Glob Access Sci Source 18:1–15. https://doi.org/10.1186/s12940-019-0468-4