Exponential Stability for Uncertain Dynamic Systems with Time-Varying Delays: LMI Optimization Approach

Journal of Optimization Theory and Applications - Tập 137 - Trang 521-532 - 2008
O. M. Kwon1, J. H. Park2, S. M. Lee3
1School of Electrical & Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
2Department of Electrical Engineering, Yeungnam University, Kyongsan, Republic of Korea
3Platform Verification Division, BcN Business Unit, KT Co. Ltd., Daejeon, Republic of Korea

Tóm tắt

In this paper, we consider dynamic systems with uncertainties and time-varying delays. Based on the Lyapunov method and convex optimization approach, a delay-dependent criterion for exponential stability of the system is derived in terms of LMI (linear matrix inequality). In order to solve effectively the LMI convex optimization problem, an interior-point algorithm is utilized in this work. Numerical examples are illustrated to show the effectiveness of our results.

Tài liệu tham khảo

Hale, J., Lune, S.M.V.: Introduction to Functional Differential Equations. Springer, New York (1993) Kolmanovskii, V.B., Myshkis, A.: Applied Theory of Functional Differential Equation. Kluwer Academic, Boston (1992) Mori, T.: Criteria for asymptotic stability of linear time-delay systems. IEEE Trans. Autom. Control 30(2), 158–161 (1985) Mahmoud, M.S., Zribi, M.: H ∞ controllers for time-delay systems using linear matrix inequalities. J. Optim. Theory Appl. 100(1), 89–122 (1999) Park, J.H., Won, S.: Asymptotic stability of neutral systems with multiple delays. J. Optim. Theory Appl. 103(1), 183–200 (1999) Park, J.H., Won, S.: A note on stability of neutral delay-differential systems. J. Frankl. Inst. 336, 543–548 (1999) Park, J.H.: Robust stabilization for dynamic systems with multiple time-varying delays and nonlinear uncertainties. J. Optim. Theory Appl. 108(1), 155–174 (2001) Yue, D., Won, S., Kwon, O.: Delay dependent stability of neutral systems with time delay: an LMI approach. IEE Proc. Control Theory Appl. 150(1), 23–27 (2003) Yue, D., Won, S., Kwon, O.: Design of delay dependent robust controller for uncertain systems with time-varying delay. In: 15th Triennial World Congress of the International Federation of Automatic Control, Barcelona, Spain, July 21, 2002 Park, J.H.: On dynamic output feedback guaranteed cost control of uncertain discrete-delay systems: an LMI optimization approach. J. Optim. Theory Appl. 121(1), 147–162 (2004) He, Y., Wu, M., She, J.H., Liu, G.P.: Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays. Syst. Control Lett. 51, 57–65 (2004) Kwon, O.M., Park, J.H.: Improved delay-dependent robust control for uncertain time-delay systems. IEEE Trans. Autom. Control 49(11), 1991–1995 (2004) Lien, C.H.: Guaranteed cost observer-based controls for a class of uncertain neutral time-delay systems. J. Optim. Theory Appl. 126(1), 137–156 (2005) Zhang, X.M., Wu, M., She, J.H., He, Y.: Delay-dependent stabilization of linear systems with time-varying state and input delays. Automatica 41, 1405–1412 (2005) Kwon, O., Park, J.H.: Matrix inequality approach to novel stability criterion for time-delay systems with nonlinear uncertainties. J. Optim. Theory Appl. 126(3), 643–656 (2005) Lien, C.H.: Stability and stabilization criteria for a class of uncertain neutral systems with time-varying delays. J. Optim. Theory Appl. 124(3), 637–657 (2005) Park, J.H.: Convex optimization approach to dynamic output feedback control for delay differential systems of neutral type. J. Optim. Theory Appl. 127(2) (2005) Park, J.H., Choi, K.: Guaranteed cost control of uncertain nonlinear neutral systems via memory state feedback. Chaos Solitons Fractals 24, 183–190 (2005) Park, J.H.: Design of dynamic controller for neutral differential systems with delay in control input. Chaos Solitons Fractals 23, 503–509 (2005) Park, J.H., Kwon, O.: On new stability criterion for delay-differential systems of neutral type. Appl. Math. Comput. 162, 627–637 (2005) Mondié, S., Kharitonov, V.L.: Exponential estimates for retarded time-delay systems: an LMI approach. IEEE Trans. Autom. Control 50(2), 268–273 (2005) Kwon, O.M., Park, J.H.: Robust H ∞ filtering for uncertain time-delay systems: matrix inequality approach. J. Optim. Theory Appl. 129(2), 309–324 (2006) Kwon, O.M., Park, J.H., Lee, S.M., Won, S.C.: LMI optimization approach to observer-based controller design of uncertain time-delay systems via delayed feedback. J. Optim. Theory Appl. 128(1), 103–117 (2006) Kwon, O.M., Park, J.H.: Decentralized guaranteed cost control for uncertain large-scale systems using delayed feedback: LMI optimization approach. J. Optim. Theory Appl. 129(3), 391–414 (2006) Kwon, O.M., Park, J.H.: Robust stabilization of uncertain systems with delays in control input. Appl. Math. Comput. 172, 1067–1077 (2006) Kwon, O.M., Park, J.H.: Exponential stability of uncertain dynamic systems including state delay. Appl. Math. Lett. 19, 901–907 (2006) Xu, S., Lam, J., Zhong, M.: New exponential estimates for time-delay systems. IEEE Trans. Autom. Control 51(9), 1501–1505 (2006) Gu, K.: An integral inequality in the stability of time-delay systems. In: IEEE Conference on Decision and Control, Sydney, Australia, 2000 Boyd, S., Ghaoui, L.E., Feron, E., Balakrishnan, V.: Linear Matrix Inequalities in Systems and Control Theory. Studies in Applied Mathematics, vol. 15. SIAM, Philadelphia (1994) Gahinet, P., Nemirovski, A., Laub, A., Chilali, M.: LMI Control Toolbox User’s Guide. The Mathworks, Natick (1995)