Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hòa Trộn Hàm Mũ của Phương Trình Navier-Stokes Ngẫu Nhiên 3D Do Tạp Âm Phần Chế Động Nhẹ Kích Hoạt
Tóm tắt
Chúng tôi chứng minh tính chất Feller mạnh và hòa trộn hàm mũ cho phương trình Navier-Stokes ngẫu nhiên 3D được tác động bởi các tiếng ồn phần chế động nhẹ (tức là hầu hết tất cả các chế độ Fourier đều bị kích động trong một số hữu hạn) thông qua cách tiếp cận phương trình Kolmogorov.
Từ khóa
#Phương trình Navier-Stokes ngẫu nhiên #tạp âm phần chế động #tính chất Feller #hòa trộn hàm mũ #phương trình Kolmogorov.Tài liệu tham khảo
Bricmont, J., Kupiainen, A., Lefevere, R.: Exponential mixing of the 2D stochastic Navier-Stokes dynamics. Commun. Math. Phys. 230(1), 87–132 (2002). MR MR1930573 (2003i:76056)
Da Prato, G., Zabczyk, J.: Ergodicity for Infinite-dimensional Systems. London Mathematical Society Lecture Note Series, vol. 229. Cambridge University Press, Cambridge (1996). MR MR1417491 (97k:60165)
Da Prato, G., Debussche, A.: Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. 82(8), 877–947 (2003). MR MR2005200 (2004m:60133)
Debussche, A., Odasso, C.: Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise. J. Evol. Equ. 6(2), 305–324 (2006). MR MR2227699 (2007f:35214)
Weinan, E., Mattingly, J.C., Sinai, Ya.: Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys. 224(1), 83–106 (2001). Dedicated to Joel L. Lebowitz. MR MR1868992 (2002m:76024)
Weinan, E., Mattingly, J.C.: Ergodicity for the Navier-Stokes equation with degenerate random forcing: finite-dimensional approximation. Commun. Pure Appl. Math. 54(11), 1386–1402 (2001). MR MR1846802 (2002g:76075)
Eckmann, J.-P., Hairer, M.: Uniqueness of the invariant measure for a stochastic PDE driven by degenerate noise. Commun. Math. Phys. 219(3), 523–565 (2001). MR MR1838749 (2002d:60054)
Elworthy, K.D., Li, X.-M.: Formulae for the derivatives of heat semigroups. J. Funct. Anal. 125(1), 252–286 (1994). MR MR1297021 (95j:60087)
Flandoli, F., Romito, M.: Markov selections for the 3D stochastic Navier-Stokes equations. Probab. Theory Relat. Fields 140(3–4), 407–458 (2008). MR MR2365480 (2009b:76033)
Folland, G.B.: Real Analysis: Modern Techniques and Their Applications, 2nd edn. Pure and Applied Mathematics (New York). Wiley, New York (1999). A Wiley-Interscience publication. MR MR1681462 (2000c:00001)
Hairer, M., Mattingly, J.C.: Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. Math. 164(3), 993–1032 (2006). MR MR2259251 (2008a:37095)
Hairer, M., Mattingly, J.C.: A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16, 658–738 (2011)
Kuksin, S., Shirikyan, A.: A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys. 221(2), 351–366 (2001). MR MR1845328 (2002e:35253)
Kuksin, S., Shirikyan, A.: Ergodicity for the randomly forced 2D Navier-Stokes equations. Math. Phys. Anal. Geom. 4(2), 147–195 (2001). MR MR1860883 (2002i:35147)
Kuksin, S.B.: Randomly Forced Nonlinear PDEs and Statistical Hydrodynamics in 2 Space Dimensions. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2006). MR MR2225710 (2007h:60055)
Mattingly, J.C.: Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics. Commun. Math. Phys. 230(3), 421–462 (2002). MR MR1937652 (2004a:76039)
Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Probability and its Applications (New York). Springer, Berlin (2006). xiv+382 pp
Norris, J.: Simplified Malliavin calculus, Séminaire de Probabilités, XX, 1984/1985. Lecture Notes in Math., vol. 1204, pp. 101–130. Springer, Berlin (1986). MR MR942019 (89f:60058)
Odasso, C.: Exponential mixing for the 3D stochastic Navier-Stokes equations. Commun. Math. Phys. 270(1), 109–139 (2007). MR MR2276442 (2008e:60190)
Odasso, C.: Exponential mixing for stochastic PDEs: the non-additive case. Probab. Theory Relat. Fields 140(1–2), 41–82 (2008)
Röckner, M., Zhang, X.: Stochastic tamed 3D Navier-Stokes equations: existence, uniqueness and ergodicity. Probab. Theory Relat. Fields 145(1–2), 211–267 (2009). MR MR2520127
Romito, M., Xu, L.: Ergodicity of the 3d stochastic Navier-Stokes equations driven by mildly degenerate noise. Stoch. Process. Appl. 121(4), 673–700 (2011)
Shirikyan, A.: Qualitative properties of stationary measures for three-dimensional Navier-Stokes equations. J. Funct. Anal. 249(2), 284–306 (2007). MR MR2345334 (2008i:35183)