Exploring the role of artificial intelligence in the study of fetal heart

Springer Science and Business Media LLC - Tập 38 - Trang 1017-1019 - 2022
Giuseppe Rizzo1, Maria Elena Pietrolucci1, Alessandra Capponi2, Ilenia Mappa1
1Department of Obstetrics and Gynecology, Fondazione Policlinico Tor Vergata, Università Di Roma Tor Vergata, Roma, Italy
2Department of Obstetrics and Gynecology Roma, Azienda Ospedaliera S. Giovanni Addolorata, Roma, Italy

Tài liệu tham khảo

(2020) AIUM practice parameter for the performance of fetal echocardiography. J Ultrasound Med 39:E5–E16 (2013) International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, Chaoui R, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 41:348–59 Chaoui R (2021) Evolution of fetal cardiac imaging in 30 years of ISUOG. Ultrasound Obstet Gynecol 5:38–42 Abuhamad A, Falkensammer P, Reichartseder F, Zhao Y (2008) Automated retrieval of standard diagnostic fetal cardiac ultrasound planes in the second trimester of pregnancy: a prospective evaluation of software. Ultrasound Obstet Gynecol 31:30–36 Rizzo G, Capponi A, Pietrolucci ME et al (2011) Satisfactory rate of postprocessing visualization of standard fetal cardiac views from 4-dimensional cardiac volumes acquired during routine ultrasound practice by experienced sonographers in peripheral centers. J Ultrasound Med 30:93–99 Bakker MK, Bergman JEH, Krikov S et al (2019) Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open 9:1–12 Nisselrooij AEL, Teunissen AKK, Clur SA et al (2019) Why are congenital heart defects being missed? Ultrasound Obstet Gynecol 55(6):747–757 Drukker L, Noble JA, Papageorghiou AT (2020) Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet Gynecol 5(6):498–505 Matthew J, Skelton E, Day TG et al (2022) Exploring a new paradigm for the fetal anomaly ultrasound scan: artificial intelligence in real time. Prenat Diagn 42:49–59 Truong VT, Nguyen BP, Nguyen-Vo TH et al (2022) Application of machine learning in screening for congenital heart diseases using fetal echocardiography. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-022-02566-3