Exploring the role of artificial intelligence in the study of fetal heart
Tài liệu tham khảo
(2020) AIUM practice parameter for the performance of fetal echocardiography. J Ultrasound Med 39:E5–E16
(2013) International Society of Ultrasound in Obstetrics and Gynecology, Carvalho JS, Allan LD, Chaoui R, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol 41:348–59
Chaoui R (2021) Evolution of fetal cardiac imaging in 30 years of ISUOG. Ultrasound Obstet Gynecol 5:38–42
Abuhamad A, Falkensammer P, Reichartseder F, Zhao Y (2008) Automated retrieval of standard diagnostic fetal cardiac ultrasound planes in the second trimester of pregnancy: a prospective evaluation of software. Ultrasound Obstet Gynecol 31:30–36
Rizzo G, Capponi A, Pietrolucci ME et al (2011) Satisfactory rate of postprocessing visualization of standard fetal cardiac views from 4-dimensional cardiac volumes acquired during routine ultrasound practice by experienced sonographers in peripheral centers. J Ultrasound Med 30:93–99
Bakker MK, Bergman JEH, Krikov S et al (2019) Prenatal diagnosis and prevalence of critical congenital heart defects: an international retrospective cohort study. BMJ Open 9:1–12
Nisselrooij AEL, Teunissen AKK, Clur SA et al (2019) Why are congenital heart defects being missed? Ultrasound Obstet Gynecol 55(6):747–757
Drukker L, Noble JA, Papageorghiou AT (2020) Introduction to artificial intelligence in ultrasound imaging in obstetrics and gynecology. Ultrasound Obstet Gynecol 5(6):498–505
Matthew J, Skelton E, Day TG et al (2022) Exploring a new paradigm for the fetal anomaly ultrasound scan: artificial intelligence in real time. Prenat Diagn 42:49–59
Truong VT, Nguyen BP, Nguyen-Vo TH et al (2022) Application of machine learning in screening for congenital heart diseases using fetal echocardiography. Int J Cardiovasc Imaging. https://doi.org/10.1007/s10554-022-02566-3