Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khám Phá Giải Thích Vật Lý của Ký Ức Dài Hạn Trong Thủy Văn Học
Tóm tắt
Ký ức dài hạn đã được nghiên cứu trong nhiều thập kỷ và từ lâu đã được công nhận rằng các chuỗi thời gian thủy văn và khí tượng thủy văn có đặc tính này. Về mặt vật lý, ký ức dài hạn được giải thích bằng cách nói rằng, khi ký ức dài hạn mạnh hơn, khả năng mà một chuỗi sẽ ‘nhớ’ giá trị trước của nó càng cao, nói cách khác, chuỗi thời gian có khả năng duy trì gần một giá trị nhất định lâu hơn. Để tăng cường lợi ích của việc nghiên cứu ký ức dài hạn, chúng tôi điều tra mức độ chính xác và mô tả của giải thích này thông qua việc phát triển một ‘thước đo tính kiên trì’ định lượng mô tả trực quan của ký ức dài hạn. ‘Thước đo tính kiên trì’ được so sánh với hệ số tỷ lệ (α) mà định lượng ký ức dài hạn bằng cách sử dụng phân tích biến động không thiên lệch. Tổng cộng có 17.359 chuỗi, bao gồm các chuỗi thủy văn và khí tượng thủy văn, được tải từ các nguồn trực tuyến và 130 chuỗi tổng hợp được phân tích. Kết quả chính là hai chế độ được phát hiện. Chế độ đầu tiên cho các chuỗi với α ≲ 1.05, trong đó thước đo tính kiên trì không nhạy cảm với hệ số tỷ lệ. Do đó, sự thay đổi trong α không dẫn đến việc tăng cường độ nhớ (tức là thước đo tính kiên trì). Chế độ thứ hai cho các chuỗi với α ≳ 1.05, trong đó một mối tương quan dương có ý nghĩa thống kê được tìm thấy. Do đó, trong một khoảng giá trị nhất định của α, giải thích vật lý về ký ức dài hạn là chính xác. Tuy nhiên, chúng tôi đề xuất rằng việc thêm các yếu tố bổ sung có thể tạo ra một ‘thước đo tính kiên trì’ mạnh mẽ hơn có thể dễ dàng hiểu và áp dụng trong công việc của các nhà thủy văn học.
Từ khóa
#ký ức dài hạn #thủy văn học #thước đo tính kiên trì #phân tích biến động không thiên lệch #hệ số tỷ lệTài liệu tham khảo
Beck HE, Van Dijk AIJM, Levizzani V, Schellekens J, Miralles DG, Martens B, De Roo A (2017) MSWEP: 3-hourly 0.25° global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data. Hydrol Earth Syst Sci 21(1):589–615
Bras RL, Rodriguez-Iturbe I (1985) Random functions and hydrology [Primo]. Addison-Wesley, Reading, MA
Caraiani P (2012) Evidence of multifractality from emerging European stock markets (multifractality stock markets). PLoS ONE 7(7):e40693
Chen Z, Ivanov PC, Hu K, Stanley HE (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65(4):041107
Chen C, Tian Y, Zhang Y, He X, Yang X, Liang X, Zheng Y, Han F, Zheng C, Yang C (2019) Effects of agricultural activities on the temporal variations of streamflow: trends and long memory. Stoch Environ Res Risk Assess 33(8):1553–1564. https://doi.org/10.1007/s00477-019-01714-x
Condon L, Maxwell R (2014) Groundwater-fed irrigation impacts spatially distributed temporal scaling behavior of the natural system: a spatio-temporal framework for understanding water management impacts. Environ Res Lett 9(3):034009
Creative RS (2016) Sample size calculation. https://www.surveysystem.com/sample-size-formula.htm. Accessed 12 2019
Doukhan P, Oppenheim G, Taqqu MS (2003) Theory and applications of long-range dependence. Birkhäuser, Basel
Eichner JF, Koscielny-Bunde E, Bunde A, Havlin S, Schellnhuber H (2003) Power-law persistence and trends in the atmosphere: a detailed study of long temperature records. Phys Rev E 68(4):046133. https://doi.org/10.1103/PhysRevE.68.046133
Flandrin P (1989) On the spectrum of fractional Brownian motions. IEEE Trans Inf Theory 35(1):197–199. https://doi.org/10.1109/18.42195
Gelhar LW (1974) Stochastic analysis of phreatic aquifers. Water Resour Res 10(3):539–545. https://doi.org/10.1029/WR010i003p00539
Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the hurst effect. SIAM Rev 46(2):269–282
Habib A (2017) Temporal scaling of hydrological time series in a shallow responsive aquifer. Imperial College London, London
Habib A, Sorensen JPR, Bloomfield JP, Muchan K, Newell AJ, Butler AP (2017) Temporal scaling phenomena in groundwater-floodplain systems using robust detrended fluctuation analysis. J Hydrol 549:715–730
Heneghan C, McDarby G (2000) Establishing the relation between detrended fluctuation analysis and power spectral density analysis for stochastic processes. Phys Rev E 62(5):6103–6110. https://doi.org/10.1103/PhysRevE.62.6103
Hurst HE (1951) Long-term storage capacity of reservoirs. Am Soc Civ Eng Trans. 116:770–799
Hurst HE (1956) Methods of using long-term storage in reservoirs. Inst Civ Eng 5(5):519–543
Istanbulluoglu E, Wang T, Wright OM, Lenters JD (2012) Interpretation of hydrologic trends from a water balance perspective: the role of groundwater storage in the Budyko hypothesis. Water Resour Res 48(3), n/a
Kantelhardt JW, Koscielny-Bunde E, Rego H, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295(3–4):441–454
Kavasseri RG, Nagarajan R (2004) Evidence of crossover phenomena in wind speed data. IEEE Trans Circuits Syst 51(11):2255
Koscielny-Bunde E, Bunde A, Havlin S, Goldreich Y (1996) Analysis of daily temperature fluctuations. Phys A Stat Mech Appl 231(4):393–396
Koutsoyiannis D (2002) The hurst phenomenon and fractional Gaussian noise made easy. Hydrol Sci J 47(4):573–595
Li Z, Zhang Y (2007) Quantifying fractal dynamics of groundwater systems with detrended fluctuation analysis. J Hydrol 336(1):139–146
Little MA, Bloomfield JP (2010) Robust evidence for random fractal scaling of groundwater levels in unconfined aquifers. J Hydrol 393(3):362–369
Liu Z, Xu J, Chen Z, Nie Q, Wei C (2014) Multifractal and long memory of humidity process in the Tarim River Basin. Stoch Environ Res Risk Assess. 28(6):1383–1400. https://doi.org/10.1007/s00477-013-0832-9
Mandelbrot BB (1982) The fractal geometry of nature [Primo]. W. H. Freeman and Company, New York
Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10:422
Markovic D, Koch M (2015) Stream response to precipitation variability: a spectral view based on analysis and modelling of hydrological cycle components. Hydrol Process 29(7):1806–1816
Matsoukas C, Islam S, Rodriguez-Iturbe I (2000) Detrended fluctuation analysis of rainfall and streamflow time series. J Geophys Res Atmos 105(D23):29165–29172
Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically based dataset of land surface fluxes and states for the conterminous United States. J Clim 15(22):3237–3251
National Research Council (1991) Opportunities in the hydrologic sciences. The National Academies Press, Washington, DC
Newman A, Sampson K, Clark MP, Bock A, Viger RJ, Blodgett D (2014) A large-sample watershed-scale hydrometeorological dataset for the contiguous USA. Hydrology and Earth System Sciences, Boulder
Ozger M (2011) Scaling characteristics of ocean wave height time series. Phys A Stat Mech Appl 390(6):981–989
Peng CK, Havlin S, Stanley HE, Goldberger AL (1995) Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, NY) 5(1):82
Reboredo JC, Rivera-Castro M, Miranda JGV, García-Rubio R (2013) How fast do stock prices adjust to market efficiency? evidence from a detrended fluctuation analysis. Phys A Stat Mech Appl. 392(7):1631–1637
Russian A, Dentz M, Borgne T, Carrera J, Jimenez-martinez J (2013) Temporal scaling of groundwater discharge in dual and multicontinuum catchment models. Water Resourc Res 49(12):8552–8564
Taqqu MS, Teverovsky V, Willinger W (1995) Estimators for long-range dependence: an empirical study. Fractals 03(04):785–798. https://doi.org/10.1142/S0218348X95000692
Williams ZC, Pelletier JD (2015) Self-affinity and surface-area-dependent fluctuations of lake-level time series. Water Resour Res 51(9):7258–7269
Yang C, Zhang Y, Liang X (2018) Analysis of temporal variation and scaling of hydrological variables based on a numerical model of the Sagehen Creek watershed. Stoch Environ Res Risk Assess 32(2):357–368. https://doi.org/10.1007/s00477-017-1421-0
Yu X, Ghasemizadeh R, Padilla IY, Kaeli D, Alshawabkeh A (2016) Patterns of temporal scaling of groundwater level fluctuation. J Hydrol 536:485–495
Zhang Q, Xu C, Yang T (2009) Scaling properties of the runoff variations in the arid and semi-arid regions of China: a case study of the Yellow River basin. Stoch Environ Res Risk Assess 23(8):1103–1111. https://doi.org/10.1007/s00477-008-0285-8
Zhang Q, Zhou Y, Singh VP, Chen YD (2011) Comparison of detrending methods for fluctuation analysis in hydrology. J Hydrol 400(1–2):121–132
Zhu J, Young MH, Osterberg J (2012) Impacts of riparian zone plant water use on temporal scaling of groundwater systems. Hydrol Process 26(9):1352–1360
Zunino L, Tabak BM, Figliola A, Pérez DG, Garavaglia M, Rosso OA (2008) A multifractal approach for stock market inefficiency. Phys A Stat Mech Appl 387(26):6558–6566