Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers

Land Use Policy - Tập 80 - Trang 163-174 - 2019
Andrew Barnes1, Iria Soto2, Vera Eory1, B. Beck3, Athanasios Τ. Balafoutis4,5, Berta Sánchez2, Jürgen Vangeyte6, S. Fountas4, T. van der Wal7, Manuel Gómez‐Barbero2
1Land Economy, Environment and Society Research Group, SRUC, Edinburgh EH9 3JG, United Kingdom
2European Commission, Joint Research Centre (JRC), Directorate Sustainable Resources, Economics of Agriculture, Edificio Expo, Calle Inca Garcilaso 3, E-41092, Seville, Spain
3Agentschap Innoveren en Ondernemen (VLAIO), Koning Albert II-laan, 35 bus 12, 1030, Brussels, Belgium
4Agricultural University of Athens, Iera Odos 75, 118 55, Athina, Greece
5Institute for Bio-economy & Agri-technology, Centre of Research & Technology Hellas, Dimarchou Georgiadou 118, 38221 Volos, Greece
6Institute for Agriculture, Fisheries and Food research (ILVO), Burgemeester Van Gansberghelaan 92 box 1, 9820, Merelbeke, Belgium
7Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA, Wageningen, The Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Alcott, 2005, Jevons’ paradox, Ecol. Econ., 54, 9, 10.1016/j.ecolecon.2005.03.020

Ascough, 2002, Computer use and satisfaction by great plains producers, ordered logit model analysis, Agron. J., 94, 1263, 10.2134/agronj2002.1263

Aubert, 2012, IT as enabler of sustainable farming, an empirical analysis of farmers’ adoption decision of precision agriculture technology, Decis. Support Syst., 54, 510, 10.1016/j.dss.2012.07.002

Balafoutis, 2017, Precision Agriculture Technologies positively contributing to GHG emissions mitigation, farm productivity and economics, Sustainability, 9, 1339, 10.3390/su9081339

Banerjee, 2008, A binary logit estimation of factors affecting adoption of GPS guidance systems by cotton producers, J. Agric. Appl. Econ., 401, 345, 10.1017/S1074070800028157

Barnes, 2001, Towards a framework for justifying public agricultural R&D, the example of UK agricultural research policy, Res. Policy, 30, 663, 10.1016/S0048-7333(00)00099-8

Barnes, 2011

Barnes, 2011, Utilising a farmer typology to understand farmer behaviour towards water quality management, Nitrate Vulnerable Zones in Scotland, J. Environ. Plan. Manag., 54, 477, 10.1080/09640568.2010.515880

Barnes, 2016, Quantifying ambivalence towards sustainable intensification. An exploration of the UK public’s attitudes towards food security experts, Food Secur., 8, 609, 10.1007/s12571-016-0565-y

Batte, 2006, The economics of precision guidance with auto-boom control for farmer-owned agricultural sprayers, Comput. Electron. Agric., 531, 28, 10.1016/j.compag.2006.03.004

Blackmore, 2006, Precision agriculture in Europe, 567

Bogdanski, 2012, Integrated food-energy systems for climate-smart agriculture, Agric. Food Secur., 1, 9, 10.1186/2048-7010-1-9

Brennan, 2007

Burton, 2004, Seeing through the’ good farmer’s’ eyes, towards developing an understanding of the social symbolic value of’ productionist’ behaviour, Sociol. Ruralis, 44, 195, 10.1111/j.1467-9523.2004.00270.x

Busse, 2014, Innovation mechanisms in German precision farming, Precis. Agric., 15, 403, 10.1007/s11119-013-9337-2

Castle, 2016

Cohen, 1970, The dissonance model in post-decision product evaluation, J. Mark. Res., 7, 315, 10.1177/002224377000700305

CSA Booster, 2015

Cullen, 2013, Non-adoption of environmental innovations in wine growing, N. Z. J. Crop Hortic. Sci., 41, 41, 10.1080/01140671.2012.744760

D’Antoni, 2012, Farmers’ perception of precision technology, the case of autosteer adoption by cotton farmers, Comput. Electron. Agric., 87, 121, 10.1016/j.compag.2012.05.017

Daberkow, 2003, Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture Technologies in the US, Precis. Agric., 4, 163, 10.1023/A:1024557205871

Davis, 1985

Diederen, P., van Meijl, H., Wolters, A., Bijack. K. 2003. Innovation Adoption in Agriculture, Innovators, Early Adopters and Laggards. Cahiers d’économie et sociologie rurales 67.

Dimos, 2017, Translational learnings from Australia: how SPAA plays a role in increasing the adoption of precision agriculture, Adv. Anim. Biosci. Precis. Agric., 8, 694, 10.1017/S2040470017000085

Eidt, 2012, Knowledge integration and the adoption of new agricultural technologies, Kenyan perspectives, Food Sec., 4, 355, 10.1007/s12571-012-0175-2

Eory, 2015

European Commission, 2017

Eurostat, 2015

Faber, 2013, Co-constructing a sustainable built environment in the Netherlands—dynamics and opportunities in an environmental sectoral innovation system, Energy Policy, 52, 628, 10.1016/j.enpol.2012.10.022

Fernandez-Cornejo, 2001, Decomposing the size effect on the adoption of innovations, agrobiotechnology and precision agriculture, AgBioForum, 42, 124

Festinger, 1957

Fountas, 2005, Farmer experience with Precision Agriculture in Denmark and the US Eastern Corn Belt, Precis. Agric., 6, 121, 10.1007/s11119-004-1030-z

Gebbers, 2010, Precision agriculture and food security, Science, 327, 828, 10.1126/science.1183899

Godfrey, 2010, Food Security the challenge of feeding 9 billion people, Science, 327, 812, 10.1126/science.1185383

Godwin, 2003, An economic analysis of the potential for precision farming in UK cereal production, Biosyst. Eng., 84, 533, 10.1016/S1537-5110(02)00282-9

Griffin, 2004

Griffin, 2017, Farm’s sequence of adoption of information-intensive precision agricultural technology, Appl. Eng. Agric., 334, 521, 10.13031/aea.12228

Hanspach, 2013, Develop, then intensify, Science, 341, 713, 10.1126/science.341.6147.713-a

Helm, 2017, Agriculture after Brexit, Oxford Rev. Econ. Policy, 33, S124, 10.1093/oxrep/grx010

Holland, 2013

Huffman, 2001, Chapter 7 human capital: education and agriculture, Vol.1, 333

Ingram, 2008, Agronomist–farmer knowledge encounters, an analysis of knowledge exchange in the context of best management practices in England, Agric. Human Values, 253, 405, 10.1007/s10460-008-9134-0

Isgin, 2008, Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption, Comput. Electron. Agric., 62, 231, 10.1016/j.compag.2008.01.004

Islam, 2013, Climate Change scepticism among farmers, J. Environ. Psychol., 34, 137, 10.1016/j.jenvp.2013.02.002

Kindred, 2015, Exploring the spatial variation in the fertilizer-nitrogen requirement of wheat within fields, J. Agric. Sci., 153, 25, 10.1017/S0021859613000919

Kingwell, 2011, The whole-farm benefits of controlled traffic farming, an Australian appraisal, Agric. Syst., 1047, 513, 10.1016/j.agsy.2011.04.001

Kutter, 2011, The role of communication and cooperation in the adoption of Precision Farming in Europe, J. Precis. Agric., 121, 2, 10.1007/s11119-009-9150-0

Lambert, 2014, Adoption and frequency of precision soil testing in cotton production, J. Agric. Resour. Econ., 391, 106

Lambert, 2015, Bundled adoption of precision agriculture technologies by cotton producers, J. Agric. Resour. Econ., 402, 325

Larson, 2008, Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production, Precis. Agric., 94, 195, 10.1007/s11119-008-9065-1

Lawson, 2011, A four nation survey of farm information management and advanced farming systems, A descriptive analysis of survey responses, Comput. Electron. Agric., 771, 7, 10.1016/j.compag.2011.03.002

Lencsés, 2014, Farmers’ perception of precision farming technology among hungarian farmers, Sustainability, 6, 8452, 10.3390/su6128452

Lima, 2018, Drivers for precision livestock technology adoption: A study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales, PLoS One, 13, 10.1371/journal.pone.0190489

Marra, 2010, Estimating the demand and willingness-to-pay for cotton yield monitors, Precis. Agric., 11, 215, 10.1007/s11119-009-9127-z

Martin, 2017, A whole farm analysis of the implications of variable maturity groups on harvest logistics and net returns advances in animal biosciences, Precis. Agric. ECPA, 8, 668

McDonagh, 2015, Do we really have a choice? The bioeconomy and future rural pathways, Prog. Hum. Geogr., 39, 658, 10.1177/0309132514563449

Miller, 2017, Farmers’ adoption path of precision agriculture technology, European Conference on Precision Agriculture 2017, 8, 708

Mims, 2005, Producers’ perceptions and attitudes toward precision agriculture technologies, Comput. Electron. Agric., 48, 256, 10.1016/j.compag.2005.04.004

Montalvo, 2008, General wisdom concerning the factors affecting the adoption of cleaner technologies, a survey 1990–2007, J. Clean. Prod., 16, 7, 10.1016/j.jclepro.2007.10.002

Olson, K., Elisabeth, P. 2003. An Economic Assessment of the Whole-farm Impact of Precision Agriculture. Paper presented at the American Agricultural Economics Association Annual Meeting, Montreal, Canada, July 27-30, 2003. Accessed on 20th February 2018. Available at: https://www.google.com/search?q=http%2C%2F%2Fageconsearch.umn.edu%2Fhandle%2F22119&ie=utf-8&oe=utf-8.

Paudel, 2011, Why don’t farmers adopt precision farming technologies in cotton production?, Selected Paper Prepared for Presentation at the Agricultural & Applied Economics Association’s 2011 AAEA & NAREA Joint Annual Meeting

Paustian, 2016, Adoption of precision agriculture technologies by German crop farmers, Precis. Agric., 18, 1

Paxton, 2011, Intensity of precision agriculture technology adoption by cotton producers, Agric. Resour. Econ. Rev., 40, 1, 10.1017/S1068280500004561

Pierpaoli, 2013, Drivers of precision agriculture technologies adoption: a literature review, Procedia Technol., 8, 61, 10.1016/j.protcy.2013.11.010

Popp, 2002, How cooperation may lead to consensus assessing the realities and perceptions of precision farming in your state, J. Am. Assoc. Farm Managers Rural Appraisers, 26

Putler, 1988, Computer use in agriculture, evidence from Tulare county, California, Am. J. Agric. Econ., 70, 790, 10.2307/1241920

Rabe-Hesketh, 2005, Maximum likelihood estimation of limited and discrete dependent variable models with nested random effects, J. Econom., 128, 301, 10.1016/j.jeconom.2004.08.017

Reichardt, 2009, Adoption and perspective of precision farming (PF) in Germany: results of several surveys among the different agricultural target groups, Precis. Agric., 10, 73, 10.1007/s11119-008-9101-1

Robertson, 2007, Opportunities and constraints for managing within-field spatial variability in Western Australian grain production, Field Crops Res., 104, 60, 10.1016/j.fcr.2006.12.013

Robertson, 2012, Adoption of variable rate fertiliser application in the Australian grains industry: status, issues and prospects, Precis. Agric., 13, 181, 10.1007/s11119-011-9236-3

Rogers, 2003

Schimmelpfennig, 2016, 217

Schrijver, 2016

Shockley, 2017, Educating producers on the profitability of precision agriculture technologies, Adv. Anim. Biosci. Precis. Agric. ECPA 2017, 8, 724

Silva, 2011, Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil, Precis. Agric., 12, 67, 10.1007/s11119-009-9155-8

Smith, 2013, Economics of precision agricultural technologies across the Great Plains, J. ASFMRA, 185

Stafford, 2000, Implementing precision agriculture in the 21st century, J. Agric. Eng. Res., 763, 267, 10.1006/jaer.2000.0577

StataCorp, 2017

Swinton, 2001, Global adoption of precision agriculture technologies, who, when and why, 557

Telabpour, 2015, The role of precision agriculture in the promotion of food security, Int. J. Agric. Food Res., 4, 1

Tey, 2012, Factors influencing the adoption of precision agricultural technologies: a review for policy implications, Precis. Agric., 13, 713, 10.1007/s11119-012-9273-6

Tiffin, 2011, The determinants of technology adoption by UK farmers using Bayesian model averaging, the cases of organic production and computer usage, Aust. J. Agric. Resour. Econ., 55, 579, 10.1111/j.1467-8489.2011.00549.x

Toma, 2018, Impact of information transfer on farmers’ uptake of innovative crop technologies. A structural equation model applied to survey data, J. Technol. Transfer, 10.1007/s10961-016-9520-5

Torrez, 2016

Tsouvalis, 2000, Exploring knowledge-cultures: precision farming, yield mapping, and the expert–farmer interface, Environ. Plan. A: Econ. Space, 32, 909, 10.1068/a32138

van der Wal, 2017

Walton, 2008, Adoption and abandonment of precision soil sampling in cotton production, J. Agric. Resour. Econ., 333, 428

Walton, 2010, Factors influencing farmer adoption of portable computers for site-specific management, a case study for cotton production, J. Agric. Appl. Econ., 422, 193, 10.1017/S1074070800003400

Watcharaanantapong, 2014, Timing of precision agriculture technology adoption in US cotton production, Precis. Agric., 15, 427, 10.1007/s11119-013-9338-1

Wheelen, 2000, The “Null hypothesis” of precision agriculture management, Precis. Agric., 2, 265, 10.1023/A:1011838806489

Zarco-Tejada, 2014