Exploring the active constituents of Oroxylum indicum in intervention of novel coronavirus (COVID-19) based on molecular docking method

Sapan Shah1, Dinesh Chaple1, Sumit Arora2, Subhash R. Yende3, Keshav S. Moharir4, Govind K. Lohiya4
1Department of Pharmaceutical Chemistry, Priyadarshini J. L. College of Pharmacy, Hingna Road, Nagpur, Maharashtra, 440016, India
2Pharmacognosy and Phytochemistry Division, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra, 440026, India
3Pharmacology Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra, 440026, India
4Pharmaceutics Department, Gurunanak College of Pharmacy, Nari, Nagpur, Maharashtra, 440026, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahad A, Ganai A, Sareer O et al (2012) Therapeutic potential of Oroxylum indicum: a review. J Pharm Res Opin 2:163–172

Antonio AS, Wiedemann LSM, Veiga-Junior VF (2020) Natural products’ role against COVID-19. RSC Adv 10:23379–23393. https://doi.org/10.1039/D0RA03774E

Benfenati E, Chaudhry Q, Gini G, Lou DJ (2019) Integrating in silico models and read-across methods for predicting toxicity of chemicals: a step-wise strategy. Environ Int 131:105060. https://doi.org/10.1016/j.envint.2019.105060

Biovia DS (2016) Discovery studio modeling environment, release 2017, San Diego. In: Dassault Systèmes

Chang J, Schul W, Butters TD et al (2011) Combination of α-glucosidase inhibitor and ribavirin for the treatment of dengue virus infection in vitro and in vivo. Antiviral Res 89:26–34. https://doi.org/10.1016/j.antiviral.2010.11.002

Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1):S5–S5. https://doi.org/10.1186/1752-153X-4-S1-S5

DE Pires V, Blundell TL, Ascher DB (2015) pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem 58:4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104

Deka DC, Kumar V, Prasad C, Kumar K, Gogoi BJ, Singh LSRB (2013) Oroxylum indicum—a medicinal plant of North East India: an overview of its nutritional, remedial, and prophylactic properties. J Appl Pharm Sci 3:S104–S112

DeLano LW (2002) Pymol: an open-source molecular graphics tool. Newsl Protein Crystallogr 400:82–92

Dev LR, Ranjeeta P, Anurag M, Rajiv G (2010) Pharmacognostic and phytochemical studies of bark of Oroxylum indicum. Pharmacogn J 2:297–303. https://doi.org/10.1016/S0975-3575(10)80120-8

Dinda B, SilSarma I, Dinda M, Rudrapaul P (2015) Oroxylum indicum (L.) Kurz, an important Asian traditional medicine: from traditional uses to scientific data for its commercial exploitation. J Ethnopharmacol 161:255–278. https://doi.org/10.1016/j.jep.2014.12.027

Fjodorova N, Vracko M, Novic M et al (2010) New public QSAR model for carcinogenicity. Chem Cent J 4(Suppl 1):S3–S3. https://doi.org/10.1186/1752-153X-4-S1-S3

Fuhrmann J, Rurainski A, Lenhof H-P, Neumann D (2010) A new Lamarckian genetic algorithm for flexible ligand-receptor docking. J Comput Chem 31:1911–1918. https://doi.org/10.1002/jcc.21478

Fuzimoto AD, Isidoro C (2020) The antiviral and coronavirus-host protein pathways inhibiting properties of herbs and natural compounds—additional weapons in the fight against the COVID-19 pandemic? J Tradit Complement Med 10:405–419. https://doi.org/10.1016/j.jtcme.2020.05.003

Isah T (2019) Stress and defense responses in plant secondary metabolites production. Biol Res 52:39. https://doi.org/10.1186/s40659-019-0246-3

Jaillet L, Artemova S, Redon S (2017) IM-UFF: Extending the universal force field for interactive molecular modeling. J Mol Graph Model 77:350–362. https://doi.org/10.1016/j.jmgm.2017.08.023

Jamroz M, Orozco M, Kolinski A, Kmiecik S (2013) Consistent view of protein fluctuations from all-atom molecular dynamics and coarse-grained dynamics with knowledge-based force-field. J Chem Theory Comput 9:119–125. https://doi.org/10.1021/ct300854w

Kasende OE, Matondo A, Muya JT, Scheiner S (2017) Interactions between temozolomide and guanine and its S and Se-substituted analogues. Int J Quantum Chem 117:157–169. https://doi.org/10.1002/qua.25294

Khaerunnisa S, Kurniawan H, Awaluddin R et al (2020) Potential inhibitor of COVID-19 main protease (Mpro) from several medicinal plant compounds by molecular docking study. Prepr. https://doi.org/10.20944/PREPRINTS202003.0226.V1

Kiran G, Karthik L, Shree Devi MS et al (2020) In Silico computational screening of Kabasura Kudineer—official siddha formulation and JACOM against SARS-CoV-2 spike protein. J Ayurveda Integr Med. https://doi.org/10.1016/j.jaim.2020.05.009

Kirtikar KR, Basu BD (2001) Indian medicinal plants, 2nd edn. Oriental Enterprises, Dehradun

Ko W-C, Rolain J-M, Lee N-Y et al (2020) Arguments in favour of remdesivir for treating SARS-CoV-2 infections. Int J Antimicrob Agents 55:105933. https://doi.org/10.1016/j.ijantimicag.2020.105933

Kurcinski M, Oleniecki T, Ciemny MP et al (2019) CABS-flex standalone: a simulation environment for fast modeling of protein flexibility. Bioinformatics 35:694–695. https://doi.org/10.1093/bioinformatics/bty685

Leach AR, Shoichet BK, Peishoff CE (2006) Prediction of protein−ligand interactions. Docking and scoring: successes and gaps. J Med Chem 49:5851–5855. https://doi.org/10.1021/jm060999m

Li K, Fan H, Yin P et al (2018) Structure-activity relationship of eight high content flavonoids analyzed with a preliminary assign-score method and their contribution to antioxidant ability of flavonoids-rich extract from Scutellaria baicalensis shoots. Arab J Chem 11:159–170. https://doi.org/10.1016/j.arabjc.2017.08.002

Lin JK, Weng MS (2006) Flavonoids as nutraceuticals. Sci Flavonoids 7:213–238. https://doi.org/10.1007/978-0-387-28822-2_8

Lin L-T, Hsu W-C, Lin C-C (2014) Antiviral natural products and herbal medicines. J Tradit Complement Med 4:24–35. https://doi.org/10.4103/2225-4110.124335

Liu A-L, Du G-H (2012) Antiviral Properties of phytochemicals BT. In: Patra AK (ed) Dietary phytochemicals and microbes. Springer Netherlands, Dordrecht, pp 93–126

Mahmood K, Rashed ER, Oliveros E et al (2020) Predisposition or protection?: COVID-19 in a patient on LVAD support with HIV/AIDS. JACC Case Rep 2:1337–1341. https://doi.org/10.1016/j.jaccas.2020.05.015

Mansouri K, Kleinstreuer N, Abdelaziz AM et al (2020) CoMPARA: collaborative modeling project for androgen receptor activity. Environ Health Perspect 128:27002. https://doi.org/10.1289/EHP5580

Mat Ali R, Houghton PJ, Raman A, Hoult JRS (1998) Antimicrobial and antiinflammatory activities of extracts and constituents of Oroxylum indicum (L.) Vent. Phytomedicine 5:375–381. https://doi.org/10.1016/S0944-7113(98)80020-2

Matondo A, Mukeba CT, Muzomwe M et al (2018) Unravelling syn- and anti-orientation in the regioselectivity of carbonyl groups of 5-fluorouracil an anticancer drug toward proton donors. Chem Phys Lett 712:196–207. https://doi.org/10.1016/j.cplett.2018.09.074

Moghaddam E, Teoh B-T, Sam S-S et al (2014) Baicalin, a metabolite of baicalein with antiviral activity against dengue virus. Sci Rep 4:5452. https://doi.org/10.1038/srep05452

Mohamat SA, Shueb RH, Che Mat NF (2018) Anti-viral activities of Oroxylum indicum extracts on chikungunya virus infection. Indian J Microbiol 58:68–75. https://doi.org/10.1007/s12088-017-0695-8

Mucsi I, Gyulai Z, Béládi I (1992) Combined effects of flavonoids and acyclovir against herpesviruses in cell cultures. Acta Microbiol Hung 39:137–147

Muya JT, Mwanangombo DT, Tsalu PV et al (2019) Conceptual DFT study of the chemical reactivity of four natural products with anti-sickling activity. SN Appl Sci 1:1457. https://doi.org/10.1007/s42452-019-1438-8

O’Boyle NM, Banck M, James CA et al (2011) Open babel: an open chemical toolbox. J Cheminform 3:33. https://doi.org/10.1186/1758-2946-3-33

Parida MM, Upadhyay C, Pandya G, Jana AM (2002) Inhibitory potential of neem (Azadirachta indica Juss) leaves on Dengue virus type-2 replication. J Ethnopharmacol 79:273–278. https://doi.org/10.1016/S0378-8741(01)00395-6

Philippe C, Rolain Jean-Marc RD (2020) Chloroquine for the 2019 novel coronavirus SARS-CoV-2. Int J Antimicrob Agents 55:105923

Pizzorno A, Padey B, Dubois J et al (2020) In vitro evaluation of antiviral activity of single and combined repurposable drugs against SARS-CoV-2. Antiviral Res 181:104878. https://doi.org/10.1016/j.antiviral.2020.104878

Rajkumar V, Guha G, Kumar RA (2012) Isolation and bioactivity evaluation of two metabolites from the methanolic extract of Oroxylum indicum stem bark. Asian Pac J Trop Biomed 2:S7–S11. https://doi.org/10.1016/S2221-1691(12)60120-8

Rogiers V, Benfenati E, Bernauer U et al (2020) The way forward for assessing the human health safety of cosmetics in the EU—workshop proceedings. Toxicology 436:152421. https://doi.org/10.1016/j.tox.2020.152421

Siriwatanametanon N, Fiebich BL, Efferth T et al (2010) Traditionally used Thai medicinal plants: in vitro anti-inflammatory, anticancer and antioxidant activities. J Ethnopharmacol 130:196–207. https://doi.org/10.1016/j.jep.2010.04.036

Suresh Babu K, Hari Babu T, Srinivas PV et al (2005) Synthesis and in vitro study of novel 7-O-acyl derivatives of Oroxylin A as antibacterial agents. Bioorg Med Chem Lett 15:3953–3956. https://doi.org/10.1016/j.bmcl.2005.05.045

Trujillo C, Sánchez-Sanz G (2016) A study of π–π stacking interactions and aromaticity in polycyclic aromatic hydrocarbon/nucleobase complexes. ChemPhysChem 17:395–405. https://doi.org/10.1002/cphc.201501019

Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein–ligand docking using GOLD. Proteins Struct Funct Bioinforma 52:609–623. https://doi.org/10.1002/prot.10465

Vlachakis D, Papakonstantinou E, Mitsis T et al (2020) Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food Chem Toxicol 146:111805. https://doi.org/10.1016/j.fct.2020.111805

Votano JR, Parham M, Hall LH et al (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377. https://doi.org/10.1093/mutage/geh043

Wang L, Wang Y, Ye D, Liu Q (2020) Review of the 2019 novel coronavirus (SARS-CoV-2) based on current evidence. Int J Antimicrob Agents 55:105948

WHO (2020) No Title. https://www.who.int/emergencies/diseases/novel-coronavirus-2019

Wu A, Peng Y, Huang B et al (2020a) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host Microbe 27:325–328. https://doi.org/10.1016/j.chom.2020.02.001

Wu C, Liu Y, Yang Y et al (2020b) Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B 10:766–788. https://doi.org/10.1016/j.apsb.2020.02.008

Yan R, Cao Y, Chen C et al (2011) Antioxidant flavonoids from the seed of Oroxylum indicum. Fitoterapia 82:841–848. https://doi.org/10.1016/j.fitote.2011.04.006

Yu M-S, Lee J, Lee JM et al (2012) Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett 22:4049–4054. https://doi.org/10.1016/j.bmcl.2012.04.081

Zakaryan H, Arabyan E, Oo A, Zandi K (2017) Flavonoids: promising natural compounds against viral infections. Arch Virol 162:2539–2551. https://doi.org/10.1007/s00705-017-3417-y

Zhang J, Xie B (2020) Current status of potential therapeutic candidates for the COVID-19 crisis. Brain Behav Immun J 87:59–73

Zhao Y, Zeng C, Massiah MA (2015) Molecular dynamics simulation reveals insights into the mechanism of unfolding by the A130T/V mutations within the MID1 Zinc-binding Bbox1 domain. PLoS ONE 10:e0124377