Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study

Data Science and Engineering - Tập 4 Số 3 - Trang 269-289 - 2019
Stephen Bonner1, Ibad Kureshi2, John Brennan1, Georgios Theodoropoulos3, A. Stephen McGough4, Bogusław Obara1
1Department of Computer Science, Durham University, Durham, UK
2InlecomSystems, Brussels, Belgium
3School of Computer Science and Engineering, SUSTech, Shenzhen, China
4School of Computing, Newcastle University, Newcastle, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Newman M (2010) Networks: an introduction. Oxford University Press, Oxford

Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801

Moyano LG (2017) Learning network representations. Eur Phys J Spec Top 226(3):499–518

Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online learning of social representations. In: ACM SIGKDD international conference on knowledge discovery and data mining

Grover A, Leskovec J (2016) node2vec : scalable feature learning for networks. In: ACM SIGKDD international conference on knowledge discovery and data mining

Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS, Obara B (2017) Evaluating the quality of graph embeddings via topological feature reconstruction. In: IEEE international conference on big data

Obara B, Grau V, Fricker MD (2012) A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics 28(18):2374

Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Stanford InfoLab

Li G, Semerci M, Yener B, Zaki MJ (2012) Effective graph classification based on topological and label attributes. Stat Anal Data Min ASA Data Sci J 5(4):265

Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) Deep topology classification: a new approach for massive graph classification. In: IEEE international conference on big data

Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2012) NetSimile: a scalable approach to size-independent network similarity. arXiv preprint arXiv:1209.2684

Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) Gfp-x: a parallel approach to massive graph comparison using spark. In: IEEE international conference on big data, pp 3298–3307

Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge

Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584

Cai H, Zheng VW, Chang KCC (2017) A comprehensive survey of graph embedding: problems, techniques and applications. arXiv preprint arXiv:1709.07604

Zhang D, Yin J, Zhu X, Zhang C (2017) Network representation learning: a survey. arXiv preprint arXiv:1801.05852

Cui P, Wang X, Pei J, Zhu W (2017) A survey on network embedding. arXiv preprint arXiv:1711.08752

Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. In: International conference on learning representations (ICLR)

Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems (NIPS)

Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations (ICLR)

Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: International conference on machine learning

Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37

Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in neural information processing systems, pp 585–591

Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph factorization. In: International conference on World Wide Web, pp 37–48

Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: ACM international on conference on information and knowledge management, pp 891–900

Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 1105–1114

Mikolov T, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Conference on neural information processing systems (NIPS)

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. In: International conference on learning representations (ICLR)

Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Web search and data mining (WSDM)

Nickel M, Kiela D (2017) Poincaré embeddings for learning hierarchical representations. arXiv preprint arXiv:1705.08039

Chamberlain B, Clough J, Deisenroth MP (2017) Neural embeddings of graphs in hyperbolic space. In: KDD workshop on mining and learning with graphs (MLG)

Munzner T (1998) Exploring large graphs in 3D hyperbolic space. In: IEEE computer graphics and applications

Epstein DB, Penner RC et al (1988) Euclidean decompositions of noncompact hyperbolic manifolds. J Differ Geomet 27(1):67–80

Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. In: International conference on artificial neural networks

Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx. Reason 50(7):969–978

Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: ACM SIGKDD international conference on knowledge discovery and data mining

Cao S, Lu W, Xu Q (2016) In: 30th AAAI conference on artificial intelligence

Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res 11:625–660

Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216

Li C, Guo X, Mei Q (2016) Deepgraph: graph structure predicts network growth. arXiv preprint arXiv:1610.06251

Liu W, Cooper H, Oh MH, Yeung S, Chen Py, Suzumura T, Chen L (2017) Learning graph topological features via GAN. arXiv preprint arXiv:1709.03545

Albert R, Barabási A (2002) Statistical mechanics of complex networks. Rev Modern Phys 74(1):47–97

Salehi Rizi F, Granitzer M, Ziegler K (2017) Properties of vector embeddings in social networks. Algorithms 10(4):109

Schnabel T, Labutov I, Mimno D, Joachims T (2015) Evaluation methods for unsupervised word embeddings. In: Conference on empirical methods in natural language processing, pp 298–307

Li J, Chen X, Hovy E, Jurafsky D (2015) Visualizing and understanding neural models in NLP. arXiv preprint arXiv:1506.01066

Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017) Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364

Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833

Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

Bonacich P (2007) Some unique properties of eigenvector centrality. Soc Netw 29(4):555

Han M, Daudjee K, Ammar K, Ozsu MT, Wang X, Jin T (2014) An experimental comparison of pregel-like graph processing systems. VLDB Endowment 7(12):1047

Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: ACM SIGCOMM computer communication review

Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499

Lvd Maaten, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579

Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a system for large-scale machine learning. In: USENIX symposium on operating systems design and implementation, vol 16, p 265

Shi S, Wang Q, Xu P, Chu X (2016) Benchmarking state-of-the-art deep learning software tools. arXiv preprint arXiv:1608.07249

Leskovec J, Krevl A (2014) SNAP datasets: Stanford large network dataset collection. http://snap.stanford.edu/data . Accessed Feb 2018

Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI conference on artificial intelligence. http://networkrepository.com . Accessed Feb 2018

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830

Karakoulas GI, Shawe-Taylor J (1999) Optimizing classifers for imbalanced training sets. In: Advances in neural information processing systems, pp 253–259