Exploring the Semantic Content of Unsupervised Graph Embeddings: An Empirical Study
Tóm tắt
Từ khóa
Tài liệu tham khảo
Goyal P, Ferrara E (2017) Graph embedding techniques, applications, and performance: a survey. arXiv preprint arXiv:1705.02801
Perozzi B, Al-Rfou R, Skiena S (2014) DeepWalk: online learning of social representations. In: ACM SIGKDD international conference on knowledge discovery and data mining
Grover A, Leskovec J (2016) node2vec : scalable feature learning for networks. In: ACM SIGKDD international conference on knowledge discovery and data mining
Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS, Obara B (2017) Evaluating the quality of graph embeddings via topological feature reconstruction. In: IEEE international conference on big data
Obara B, Grau V, Fricker MD (2012) A bioimage informatics approach to automatically extract complex fungal networks. Bioinformatics 28(18):2374
Page L, Brin S, Motwani R, Winograd T (1999) The PageRank citation ranking: bringing order to the web. Stanford InfoLab
Li G, Semerci M, Yener B, Zaki MJ (2012) Effective graph classification based on topological and label attributes. Stat Anal Data Min ASA Data Sci J 5(4):265
Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) Deep topology classification: a new approach for massive graph classification. In: IEEE international conference on big data
Berlingerio M, Koutra D, Eliassi-Rad T, Faloutsos C (2012) NetSimile: a scalable approach to size-independent network similarity. arXiv preprint arXiv:1209.2684
Bonner S, Brennan J, Theodoropoulos G, Kureshi I, McGough AS (2016) Gfp-x: a parallel approach to massive graph comparison using spark. In: IEEE international conference on big data, pp 3298–3307
Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3(Mar):1157
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Hamilton WL, Ying R, Leskovec J (2017) Representation learning on graphs: methods and applications. arXiv preprint arXiv:1709.05584
Cai H, Zheng VW, Chang KCC (2017) A comprehensive survey of graph embedding: problems, techniques and applications. arXiv preprint arXiv:1709.07604
Zhang D, Yin J, Zhu X, Zhang C (2017) Network representation learning: a survey. arXiv preprint arXiv:1801.05852
Cui P, Wang X, Pei J, Zhu W (2017) A survey on network embedding. arXiv preprint arXiv:1711.08752
Bruna J, Zaremba W, Szlam A, LeCun Y (2013) Spectral networks and locally connected networks on graphs. In: International conference on learning representations (ICLR)
Defferrard M, Bresson X, Vandergheynst P (2016) Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in neural information processing systems (NIPS)
Kipf TN, Welling M (2017) Semi-supervised classification with graph convolutional networks. In: International conference on learning representations (ICLR)
Niepert M, Ahmed M, Kutzkov K (2016) Learning convolutional neural networks for graphs. In: International conference on machine learning
Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemometr Intell Lab Syst 2(1–3):37
Belkin M, Niyogi P (2002) Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in neural information processing systems, pp 585–591
Ahmed A, Shervashidze N, Narayanamurthy S, Josifovski V, Smola AJ (2013) Distributed large-scale natural graph factorization. In: International conference on World Wide Web, pp 37–48
Cao S, Lu W, Xu Q (2015) Grarep: learning graph representations with global structural information. In: ACM international on conference on information and knowledge management, pp 891–900
Ou M, Cui P, Pei J, Zhang Z, Zhu W (2016) Asymmetric transitivity preserving graph embedding. In: ACM SIGKDD international conference on knowledge discovery and data mining, pp 1105–1114
Mikolov T, Chen K, Corrado G, Dean J (2013) Distributed representations of words and phrases and their compositionality. In: Conference on neural information processing systems (NIPS)
Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in vector space. In: International conference on learning representations (ICLR)
Backstrom L, Leskovec J (2011) Supervised random walks: predicting and recommending links in social networks. In: Web search and data mining (WSDM)
Nickel M, Kiela D (2017) Poincaré embeddings for learning hierarchical representations. arXiv preprint arXiv:1705.08039
Chamberlain B, Clough J, Deisenroth MP (2017) Neural embeddings of graphs in hyperbolic space. In: KDD workshop on mining and learning with graphs (MLG)
Munzner T (1998) Exploring large graphs in 3D hyperbolic space. In: IEEE computer graphics and applications
Epstein DB, Penner RC et al (1988) Euclidean decompositions of noncompact hyperbolic manifolds. J Differ Geomet 27(1):67–80
Hinton GE, Krizhevsky A, Wang SD (2011) Transforming auto-encoders. In: International conference on artificial neural networks
Salakhutdinov R, Hinton G (2009) Semantic hashing. Int J Approx. Reason 50(7):969–978
Wang D, Cui P, Zhu W (2016) Structural deep network embedding. In: ACM SIGKDD international conference on knowledge discovery and data mining
Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S (2010) Why does unsupervised pre-training help deep learning? J Mach Learn Res 11:625–660
Hamilton WL, Ying R, Leskovec J (2017) Inductive representation learning on large graphs. arXiv preprint arXiv:1706.02216
Li C, Guo X, Mei Q (2016) Deepgraph: graph structure predicts network growth. arXiv preprint arXiv:1610.06251
Liu W, Cooper H, Oh MH, Yeung S, Chen Py, Suzumura T, Chen L (2017) Learning graph topological features via GAN. arXiv preprint arXiv:1709.03545
Salehi Rizi F, Granitzer M, Ziegler K (2017) Properties of vector embeddings in social networks. Algorithms 10(4):109
Schnabel T, Labutov I, Mimno D, Joachims T (2015) Evaluation methods for unsupervised word embeddings. In: Conference on empirical methods in natural language processing, pp 298–307
Li J, Chen X, Hovy E, Jurafsky D (2015) Visualizing and understanding neural models in NLP. arXiv preprint arXiv:1506.01066
Conneau A, Kiela D, Schwenk H, Barrault L, Bordes A (2017) Supervised learning of universal sentence representations from natural language inference data. arXiv preprint arXiv:1705.02364
Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In: European conference on computer vision, pp 818–833
Han M, Daudjee K, Ammar K, Ozsu MT, Wang X, Jin T (2014) An experimental comparison of pregel-like graph processing systems. VLDB Endowment 7(12):1047
Faloutsos M, Faloutsos P, Faloutsos C (1999) On power-law relationships of the internet topology. In: ACM SIGCOMM computer communication review
Oord Avd, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499
Lvd Maaten, Hinton G (2008) Visualizing data using t-sne. J Mach Learn Res 9(Nov):2579
Arlot S, Celisse A (2010) A survey of cross-validation procedures for model selection. Stat Surv 4:40–79
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S, Irving G, Isard M, et al (2016) Tensorflow: a system for large-scale machine learning. In: USENIX symposium on operating systems design and implementation, vol 16, p 265
Shi S, Wang Q, Xu P, Chu X (2016) Benchmarking state-of-the-art deep learning software tools. arXiv preprint arXiv:1608.07249
Leskovec J, Krevl A (2014) SNAP datasets: Stanford large network dataset collection. http://snap.stanford.edu/data . Accessed Feb 2018
Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI conference on artificial intelligence. http://networkrepository.com . Accessed Feb 2018
Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
Karakoulas GI, Shawe-Taylor J (1999) Optimizing classifers for imbalanced training sets. In: Advances in neural information processing systems, pp 253–259