Exploring the Origins of the Normal Prostate and Prostate Cancer Stem Cell
Tóm tắt
Từ khóa
Tài liệu tham khảo
Clarke, M. F., Dick, J. E., Dirks, P. B., et al. (2006). Cancer stem cells—perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Research, 66, 9339–9344.
Bell, D. R., & Van Zant, G. (2004). Stem cells, aging, and cancer: inevitabilities and outcomes. Oncogene, 23, 7290–7296.
Feinberg, A. P., Ohlsson, R., & Henikoff, S. (2006). The epigenetic progenitor origin of human cancer. Nature Reviews Genetics, 7, 21–33.
Kellokumpu-Lehtinen, P., Santti, R., & Pelliniemi, L. J. (1979). Early cytodifferentiation of human prostatic urethra and Leydig cells. Anatomical Record, 194, 429–443.
Kellokumpu-Lehtinen, P. (1983). Localization of acid phosphatase activity in testosterone-treated prostatic urethra of human fetuses. Prostate, 4, 265–270.
Kellokumpu-Lehtinen, P., Santti, R., & Pelliniemi, L. J. (1980). Correlation of early cytodifferentiation of the human fetal prostate and Leydig cells. Anatomical Record, 196, 263–273.
Kellokumpu-Lehtinen, P., Santti, R. S., & Pelliniemi, L. J. (1981). Development of human fetal prostate in culture. Urological Research, 9, 89–98.
Kellokumpu-Lehtinen, P., & Pelliniemi, L. J. (1988). Hormonal regulation of differentiation of human fetal prostate and Leydig cells in vitro. Folia Histochemica et Cytobiologica, 26, 113–117.
Cunha, G. R. (1972). Epithelio-mesenchymal interactions in primordial gland structures which become responsive to androgenic stimulation. Anatomical Record, 172, 179–195.
Takeda, H., Mizuno, T., & Lasnitzki, I. (1985). Autoradiographic studies of androgen-binding sites in the rat urogenital sinus and postnatal prostate. Journal of Endocrinology, 104, 87–92.
Cunha, G. R., Donjacour, A. A., Cooke, P. S., et al. (1987). The endocrinology and developmental biology of the prostate. Endocrine Reviews, 8, 338–362.
Donjacour, A. A., & Cunha, G. R. (1993). Assessment of prostatic protein secretion in tissue recombinants made of urogenital sinus mesenchyme and urothelium from normal or androgen-insensitive mice. Endocrinology, 132, 2342–2350.
Cunha, G. R., & Lung, B. (1978). The possible influence of temporal factors in androgenic responsiveness of urogenital tissue recombinants from wild-type and androgen- insensitive (Tfm) mice. Journal of Experimental Zoology, 205, 181–193.
Aumueller, G., Seitz, J., & Riva, A. (1994). Functional Morphology of Prostate Gland pp. 61–112. Kluwer Academic.
Kellokumpu-Lehtinen, P. (1980). The histochemical localization of acid phosphatase in human fetal urethral and prostatic epithelium. Investigative Urology, 17, 435–440.
Wernert, N., Seitz, G., & Achtstatter, T. (1987). Immunohistochemical investigation of different cytokeratins and vimentin in the prostate from the fetal period up to adulthood and in prostate carcinoma. Pathology, Research and Practice, 182, 617–626.
Aumuller, G., Seitz, J., & Bischof, W. (1983). Immunohistochemical study on the initiation of acid phosphatase secretion in the human prostate. Cytochemistry and biochemistry of acid phosphatases IV. Journal of Andrology, 4, 183–191.
Timms, B. G., Mohs, T. J., & Didio, L. J. (1994). Ductal budding and branching patterns in the developing prostate. Journal of Urology, 151, 1427–1432.
Sugimura, Y., Cunha, G. R., & Donjacour, A. A. (1986). Morphogenesis of ductal networks in the mouse prostate. Biology of Reproduction, 34, 961–971.
Lee, C., Sensibar, J. A., Dudek, S. M., Hiipakka, R. A., & Liao, S. T. (1990). Prostatic ductal system in rats: regional variation in morphological and functional activities. Biology of Reproduction, 43, 1079–1086.
De Marzo, A. M., Meeker, A. K., Epstein, J. I., & Coffey, D. S. (1998). Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells. American Journal of Pathology, 153, 911–919.
Isaacs, J. T. (2008). Prostate stem cells and benign prostatic hyperplasia. Prostate, 68(9), 1025–1034.
Tsujimura, A., Koikawa, Y., Salm, S., et al. (2002). Proximal location of mouse prostate epithelial stem cells: a model of prostatic homeostasis. Journal of Cell Biology, 157, 1257–1265.
Kyprianou, N., & Isaacs, J. T. (1988). Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology, 123, 2124–2131.
De Marzo, A. M., Nelson, W. G., Meeker, A. K., & Coffey, D. S. (1998). Stem cell features of benign and malignant prostate epithelial cells. Journal of Urology, 160, 2381–2392.
Bonkhoff, H., Stein, U., & Remberger, K. (1994). The proliferative function of basal cells in the normal and hyperplastic human prostate. Prostate, 24, 114–118.
Wang, S., Garcia, A. J., Wu, M., Lawson, D. A., Witte, O. N., & Wu, H. (2006). Pten deletion leads to the expansion of a prostatic stem/progenitor cell subpopulation and tumor initiation. Proceedings of the National Academy of Sciences of the United States of America, 103, 1480–1485.
Signoretti, S., Waltregny, D., Dilks, J., et al. (2000). p63 is a prostate basal cell marker and is required for prostate development. American Journal of Pathology, 157, 1769–1775.
Signoretti, S., Pires, M. M., Lindauer, M., et al. (2005). p63 regulates commitment to the prostate cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 102, 11355–11360.
Uzgare, A. R., Xu, Y., & Isaacs, J. T. (2004). In vitro culturing and characteristics of transit amplifying epithelial cells from human prostate tissue. Journal of Cellular Biochemistry, 91, 196–205.
Liu, A. Y., & Peehl, D. M. (2001). Characterization of cultured human prostatic epithelial cells by cluster designation antigen expression. Cell & Tissue Research, 305, 389–397.
Aumuller, G., Leonhardt, M., Renneberg, H., von Rahden, B., Bjartell, A., & Abrahamsson, P. A. (2001). Semiquantitative morphology of human prostatic development and regional distribution of prostatic neuroendocrine cells. Prostate, 46, 108–115.
Kurita, T., Medina, R. T., Mills, A. A., & Cunha, G. R. (2004). Role of p63 and basal cells in the prostate. Development, 131, 4955–4964.
Evans, G. S., & Chandler, J. A. (1987). Cell proliferation studies in the rat prostate: II. The effects of castration and androgen-induced regeneration upon basal and secretory cell proliferation. Prostate, 11, 339–351.
English, H. F., Santen, R. J., & Isaacs, J. T. (1987). Response of glandular versus basal rat ventral prostatic epithelial cells to androgen withdrawal and replacement. Prostate, 11, 229–242.
Bonkhoff, H., & Remberger, K. (1996). Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate, 28, 98–106.
Jin, R. J., Wang, Y., Masumori, N., et al. (2004). NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Cancer Research, 64, 5489–5495.
Mirosevich, J., Gao, N., Gupta, A., Shappell, S. B., Jove, R., & Matusik, R. J. (2006). Expression and role of Foxa proteins in prostate cancer. Prostate, 66, 1013–1029.
Gupta, A., Wang, Y.-Q., Browne, C., et al. (2008). Neuroendocrine differentiation in the 12T-10 transgenic prostate mouse model mimics endocrine differentiation of pancreatic beta cells. The Prostate, 68, 50–60.
Jorgensen, M. C., Ahnfelt-Ronne, J., Hald, J., Madsen, O. D., Serup, P., & Hecksher-Sorensen, J. (2007). An illustrated review of early pancreas development in the mouse. Endocrine Reviews, 28, 685–705.
Fargeas, C. A., Joester, A., Missol-Kolka, E., Hellwig, A., Huttner, W. B., & Corbeil, D. (2004). Identification of novel Prominin-1/CD133 splice variants with alternative C-termini and their expression in epididymis and testis. Journal of Cell Science, 117, 4301–4311.
Richardson, G. D., Robson, C. N., Lang, S. H., Neal, D. E., Maitland, N. J., & Collins, A. T. (2004). CD133, a novel marker for human prostatic epithelial stem cells. Journal of Cell Science, 117, 3539–3545.
Mundy, G. R. (2002). Metastasis to bone: causes, consequences and therapeutic opportunities. Nature reviews Cancer, 2, 584–593.
Shepherd, C. J., Rizzo, S., Ledaki, I., et al. (2008). Expression profiling of CD133(+) and CD133(-) epithelial cells from human prostate. Prostate, 68(9), 1007–1024.
Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005). Prospective identification of tumorigenic prostate cancer stem cells. Cancer Research, 65, 10946–10951.
Burger, P. E., Xiong, X., Coetzee, S., et al. (2005). Sca-1 expression identifies stem cells in the proximal region of prostatic ducts with high capacity to reconstitute prostatic tissue. Proceedings of the National Academy of Sciences of the United States of America, 102, 7180–7185.
Xin, L., Lawson, D. A., & Witte, O. N. (2005). The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 102, 6942–6947.
Li, Y., & Rosen, J. M. (2005). Stem/progenitor cells in mouse mammary gland development and breast cancer. Journal of Mammary Gland Biology and Neoplasia, 10, 17–24.
Patrawala, L., Calhoun, T., Schneider-Broussard, R., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene, 25, 1696–1708.
Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., & Farrar, W. L. (2008). CD44(+)CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. British Journal of Cancer, 98, 756–765.
Patrawala, L., Calhoun, T., Schneider-Broussard, R., Zhou, J., Claypool, K., & Tang, D. G. (2005). Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and A. Cancer Research, 65, 6207–6219.
Brown, M. D., Gilmore, P. E., Hart, C. A., et al. (2007). Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate, 67, 1384–1396.
Gu, G., Yuan, J., Wills, M. L., & Kasper, S. (2007). Prostate cancer cells with stem cell characteristics reconstitute the original human tumor in vivo. Cancer Research, 67, 4807–4815.
Pellegrini, G., Ranno, R., Stracuzzi, G., et al. (1999). The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation, 68, 868–879.
Li, H., Chen, X., Calhoun-Davis, T., Claypool, K., & Tang, D. G. (2008). PC3 human prostate carcinoma cell holoclones contain self-renewing tumor-initiating cells. Cancer Research, 68, 1820–1825.
Sell, S. (2004). Stem cell origin of cancer and differentiation therapy. Critical Reviews in Oncology/Hematology, 51, 1–28.
Stamey, T. A., Freiha, F. S., McNeal, J. E., Redwine, E. A., Whittemore, A. S., & Schmid, H. P. (1993). Localized prostate cancer. Relationship of tumor volume to clinical significance for treatment of prostate cancer. Cancer, 71, 933–938.
Adolfsson, J. (2007). Commentary: on the incidence of histological prostate cancer and the probable diagnosis of cases with tumours too small to produce symptoms or to attract attention on physical examination–the findings of Dr Arnold Rice Rich. International Journal of Epidemiology, 36, 285–287.
Shipitsin, M., Campbell, L. L., Argani, P., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11, 259–273.
Feinberg, A. P. (2007). Phenotypic plasticity and the epigenetics of human disease. Nature, 447, 433–440.
Krivtsov, A. V., & Armstrong, S. A. (2007). MLL translocations, histone modifications and leukaemia stem-cell development. Nature Reviews Cancer, 7, 823–833.
Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006). Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Natural Medicines, 12, 1167–1174.
Krivtsov, A. V., Twomey, D., Feng, Z., et al. (2006). Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature, 442, 818–822.
Schalken, J. A., & van Leenders, G. (2003). Cellular and molecular biology of the prostate: stem cell biology. Urology, 62, 11–20.