Khám Phá Các Phân Loại Thứ Tự của Chế Độ Hỏng trong Quản Lý Độ Tin Cậy: Một Mô Hình Đồng Thuận Dựa Trên Tối Ưu Với Độ Tin Cậy Giới Hạn

Group Decision and Negotiation - Tập 31 - Trang 49-80 - 2021
Jing Xiao1, Xiuli Wang1, Hengjie Zhang2
1School of Economics and Management, Nanjing University of Science and Technology, Nanjing, China
2Business School, Hohai University, Nanjing, China

Tóm tắt

Phân tích chế độ thất bại và ảnh hưởng (FMEA) là một hoạt động hệ thống nhằm xác định, đánh giá và loại bỏ các chế độ thất bại tiềm ẩn (FM) trong một hệ thống/quá trình nhằm nâng cao chất lượng và độ tin cậy của sản phẩm. Để cải thiện hiệu quả thực hiện FMEA, nghiên cứu này đề xuất một phương pháp FMEA dựa trên đồng thuận để suy diễn các phân loại thứ tự của FM, trong đó các thành viên trong nhóm FMEA sử dụng phân phối ngôn ngữ để truyền đạt sở thích của họ. Trong phương pháp FMEA được đề xuất, một mô hình tối ưu đồng thuận đa giai đoạn với độ tin cậy giới hạn được thiết kế để hỗ trợ nhóm FMEA đạt được sự đồng thuận. Trong quá trình đạt được đồng thuận, một mô hình tối ưu đồng thuận tối đa dựa trên độ tin cậy giới hạn được cung cấp để có được các gợi ý điều chỉnh bằng cách tối đa hóa mức độ đồng thuận giữa các thành viên nhóm FMEA. Nếu mức độ đồng thuận đã xác định không thể đạt được, các gợi ý điều chỉnh thu được từ mô hình tối ưu đồng thuận tối đa được áp dụng để hướng dẫn việc điều chỉnh sở thích của các thành viên trong nhóm FMEA. Ngược lại, một mô hình tối ưu đồng thuận hai giai đoạn dựa trên độ tin cậy giới hạn được thiết kế để suy diễn các gợi ý điều chỉnh cho việc điều chỉnh sở thích của các thành viên trong nhóm FMEA. Cuối cùng, một nghiên cứu điển hình về vụ nổ thùng dầu diesel biển, phân tích độ nhạy và phân tích so sánh được đề xuất để minh họa tính khả thi và hiệu quả của phương pháp FMEA được đề xuất.

Từ khóa


Tài liệu tham khảo

Altuzarra A, Moreno-Jiménez JM, Salvador M (2010) Consensus building in AHP-group decision making: a Bayesian approach. Oper Res 58:1755–1773 Ardeshirtanha K, Sharafati A (2020) Assessment of water supply dam failure risk: Development of new stochastic failure modes and effects analysis. Water Resour Manag 34:1827–1841 Baghery M, Yousefi S, Rezaee MJ (2018) Risk measurement and prioritization of auto parts manufacturing processes based on process failure analysis, interval data envelopment analysis and grey relational analysis. J Intell Manuf 29:1803–1825 Ben-Arieh D, Easton T (2007) Multi-criteria group consensus under linear cost opinion elasticity. Decis Support Syst 43:713–721 Bhuvanesh Kumar M, Parameshwaran R (2018) Fuzzy integrated QFD, FMEA framework for the selection of lean tools in a manufacturing organisation. Prod Plan Control 29:403–417 Bowles JB, Peláez CE (1995) Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliab Eng Syst Saf 50:203–213 Bozdag E, Asan U, Soyer A, Serdarasan S (2015) Risk prioritization in failure mode and effects analysis using interval type-2 fuzzy sets. Expert Syst Appl 42:4000–4015 Catelani M, Ciani L, Venzi M (2018) Failure modes, mechanisms and effect analysis on temperature redundant sensor stage. Reliab Eng Syst Saf 180:425–433 Certa A, Enea M, Galante GM, La Fata CM (2017) ELECTRE TRI-based approach to the failure modes classification on the basis of risk parameters: An alternative to the risk priority number. Comput Ind Eng 108:100–110 Chao XR, Kou G, Peng Y, Herrera-Viedma E (2021) Large-scale group decision-making with non-cooperative behaviors and heterogeneous preferences: An application in financial inclusion. Eur J Oper Res 288:271–293 Chen X, Liang HM, Gao Y, Xu WJ (2020) A method based on the disappointment almost stochastic dominance degree for the multi-attribute decision making with linguistic distributions. Inf Fus 54:10–20 Cheng D, Yuan YX, Wu Y, Hao TT, Cheng FX (2021) Maximum satisfaction consensus with budget constraints considering individual tolerance and compromise limit behaviors. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2021.04.051 Chiclana F, Tapia García JM, del Moral MJ, Herrera-Viedma E (2013) A statistical comparative study of different similarity measures of consensus in group decision making. Inf Sci 221:110–123 Chin KS, Wang YM, Ka Kwai Poon G, Yang JB (2009) Failure mode and effects analysis using a group-based evidential reasoning approach. Comput Oper Res 36:1768–1779 Das Adhikary D, Kumar Bose G, Bose D, Mitra S (2014) Multi criteria FMECA for coal-fired thermal power plants using COPRAS-G. Int J Quality Reliabil Manag 31:601–614 Dong YC, Xu YF, Yu S (2009) Computing the numerical scale of the linguistic term set for the 2-tuple fuzzy linguistic representation model. IEEE Trans Fuzzy Syst 17:1366–1378 Dong YC, Zhan M, Kou G, Ding ZG, Liang HM (2018) A survey on the fusion process in opinion dynamics. Inf Fus 43:57–65 Faiella G, Parand A, Franklin BD, Chana P, Cesarelli M, Stanton NA, Sevdalis N (2018) Expanding healthcare failure mode and effect analysis: a composite proactive risk analysis approach. Reliab Eng Syst Saf 169:117–126 Gou XJ, Xu ZS, Liao HC, Herrera F (2021) Consensus model handling minority opinions and noncooperative behaviors in large-scale group decision-making under double hierarchy linguistic preference relations. IEEE Trans Cybernet 51:283–296 Herrera F, Martinez L (2000) A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans Fuzzy Syst 8:746–752 Herrera-Viedma E, Cabrerizo FJ, Kacprzyk J, Pedrycz W (2014) A review of soft consensus models in a fuzzy environment. Inf Fus 17:4–13 Herrera-Viedma E, Chiclana F, Dong YC, Loia V, Kou G, Fujita H (2018) Guest editorial: Intelligent decision making and consensus under uncertainty in inconsistent and dynamic environments. Knowl-Based Syst 162:1–2 Huang J, Li Z, Liu HC (2017) New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliab Eng Syst Saf 167:302–309 Huang J, You JX, Liu HC, Song MS (2020) Failure mode and effect analysis improvement: A systematic literature review and future research agenda. Reliab Eng Syst Saf 199:106885 Jee TL, Tay KM, Lim CP (2015) A new two-stage fuzzy inference system-based approach to prioritize failures in failure mode and effect analysis. IEEE Trans Reliab 64:869–877 Ju YB, Liang YY, Luis M, Santibanez Gonzalez EDR, Giannakis M, Dong P, Wang A (2020) A new framework for health-care waste disposal alternative selection under multi-granular linguistic distribution assessment environment. Comput Ind Eng 145:106489 Ko WC (2013) Exploiting 2-tuple linguistic representational model for constructing HOQ-based failure modes and effects analysis. Comput Ind Eng 64:858–865 Kutlu AC, Ekmekçioğlu M (2012) Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP. Expert Syst Appl 39:61–67 Li Z, Xiao FY, Fei LG, Mahadevan S, Deng Y (2017) An evidential failure mode and effects analysis using linguistic terms. Qual Reliab Eng Int 33:993–1010 Li CC, Dong YC, Pedrycz W, Herrera F (2020) Integrating continual personalized individual semantics learning in consensus reaching in linguistic group decision making. IEEE Trans Syst Man Cybernet Syst. https://doi.org/10.1109/TSMC.2020.3031086 Liu HC, Liu L, Liu N, Mao LX (2012) Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Syst Appl 39:12926–12934 Liu HC, Liu L, Lin QL (2013) Fuzzy failure mode and effects analysis using fuzzy evidential reasoning and belief rule-based methodology. IEEE Trans Reliab 62:23–36 Liu HC, You JX, Fan XJ, Lin QL (2014) Failure mode and effects analysis using D numbers and grey relational projection method. Expert Syst Appl 41:4670–4679 Liu HC, You JX, Li P, Su Q (2016a) Failure mode and effect analysis under uncertainty: An integrated multiple criteria decision making approach. IEEE Trans Reliab 65:1380–1392 Liu HC, You JX, Chen SM, Chen YZ (2016b) An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty. IIE Trans 48:1027–1042 Liu HC, Li ZJ, Song WY, Su Q (2017) Failure mode and effect analysis using cloud model theory and PROMETHEE method. IEEE Trans Reliab 66:1058–1072 Liu HC, You JX, Duan CY (2019) An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int J Prod Econ 207:163–172 Liu Y, Zhou T, Forrest JYL (2020) A multivariate minimum cost consensus model for negotiations of holdout demolition. Group Decis Negot 29:871–899 Lolli F, Ishizaka A, Gamberini R, Rimini B, Messori M (2015) FlowSort-GDSS—a novel group multi-criteria decision support system for sorting problems with application to FMEA. Expert Syst Appl 42:6342–6349 Pillay A, Wang J (2003) Modified failure mode and effects analysis using approximate reasoning. Reliab Eng Syst Saf 79:69–85 Shrestha SM, Mallineni JK, Yedidi KR, Knisely B, Tatapudi S, Kuitche J, TamizhMani G (2015) Determination of dominant failure modes using FMECA on the field deployed c-Si modules under hot-dry desert climate. IEEE Journal of Photovoltaics 5:174–182 Song WY, Ming XG, Wu ZY, Zhu BT (2013) Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. Int J Comput Integr Manuf 26:1172–1186 Song WY, Ming XG, Wu ZY, Zhu BT (2014) A rough TOPSIS approach for failure mode and effects analysis in uncertain environments. Qual Reliab Eng Int 30:473–486 Susskind LE, McKearnen S, Thomas-Lamar J (1999) The consensus building handbook: a comprehensive guide to reaching agreement. Sage Publications, London Wang Z, Gao JM, Wang RX, Chen K, Gao ZY, Zheng W (2018) Failure mode and effects analysis by using the house of reliability-based rough VIKOR approach. IEEE Trans Reliab 67:230–248 Wang WZ, Liu XW, Qin JD, Liu SL (2019) An extended generalized TODIM for risk evaluation and prioritization of failure modes considering risk indicators interaction. IISE Transactions 51:1236–1250 Wang WZ, Liu XW, Liu SL (2020) Failure mode and effect analysis for machine tool risk analysis using extended gained and lost dominance score method. IEEE Trans Reliab 69:954–967 Wu YZ, Li CC, Chen X, Dong YC (2018) Group decision making based on linguistic distributions and hesitant assessments: Maximizing the support degree with an accuracy constraint. Inf Fus 41:151–160 Wu YZ, Dong YC, Qin J, Pedrycz W (2020) Flexible linguistic expressions and consensus reaching with accurate constraints in group decision-making. IEEE Trans Cybernet 50:2488–2501 Wu YZ, Zhang Z, Kou G, Zhang HJ, Chao XR, Li CC, Dong YC, Herrera F (2021) Distributed linguistic representations in decision making: taxonomy, key elements and applications, and challenges in data science and explainable artificial intelligence. Inf Fus 65:165–178 Xiao J, Wang XL, Zhang HJ (2020a) Managing personalized individual semantics and consensus in linguistic distribution large-scale group decision making. Inf Fus 53:20–34 Xiao J, Wang XL, Zhang HJ (2020b) Managing classification-based consensus in social network group decision making: an optimization-based approach with minimum information loss. Inf Fus 63:74–87 Xu WJ, Chen X, Dong YC, Chiclana F (2020) Impact of decision rules and non-cooperative behaviors on minimum consensus cost in group decision making. Group Decis Negot. https://doi.org/10.1007/s10726-020-09653-7 Yang ZL, Wang J (2015) Use of fuzzy risk assessment in FMEA of offshore engineering systems. Ocean Eng 95:195–204 Yang Z, Bonsall S, Wang J (2008) Fuzzy rule-based bayesian reasoning approach for prioritization of failures in FMEA. IEEE Trans Reliab 57:517–528 Yu SM, Du ZJ, Xu XH (2020) Hierarchical punishment-driven consensus model for probabilistic linguistic large-group decision making with application to global supplier selection. Group Decis Negot. https://doi.org/10.1007/s10726-020-09681-3 Zha QB, Liang HM, Kou G, Dong YC, Yu S (2019) A feedback mechanism with bounded confidence- based optimization approach for consensus reaching in multiple attribute large-scale group decision-making. IEEE Trans Comput Soc Syst 6:994–1006 Zhang GQ, Dong YC, Xu YF (2014) Consistency and consensus measures for linguistic preference relations based on distribution assessments. Inf Fus 17:46–55 Zhang BW, Dong YC, Herrera-Viedma E (2019) Group decision making with heterogeneous preference structures: an automatic mechanism to support consensus reaching. Group Decis Negot 28:585–617 Zhang BW, Dong YC, Feng X, Pedrycz W (2020a) Maximum fuzzy consensus feedback mechanism with minimum cost and private interest in group decision making. IEEE Trans Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2020.3006559 Zhang HJ, Xiao J, Palomares I, Liang HM, Dong YC (2020b) Linguistic distribution-based optimization approach for large-scale GDM with comparative linguistic information: an application on the selection of wastewater disinfection technology. IEEE Trans Fuzzy Syst 28:376–389 Zhang Z, Gao Y, Li Z (2020c) Consensus reaching for social network group decision making by considering leadership and bounded confidence. Knowl-Based Syst 204:106240 Zhang Z, Li ZL, Gao Y (2021) Consensus reaching for group decision making with multi-granular unbalanced linguistic information: a bounded confidence and minimum adjustment-based approach. Information Fusion 74:96–110 Zhou YQ, Xia JW, Zhong YT, Pang JH (2016) An improved FMEA method based on the linguistic weighted geometric operator and fuzzy priority. Qual Eng 28:491–498