Exploring the Effects of Subfreezing Temperature and Salt Concentration on Ice Growth Inhibition of Antarctic Gram-Negative Bacterium Marinomonas Primoryensis Using Coarse-Grained Simulation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nguyen, D. T., Colvin, M. E., Yeh, Y., Feeney, R. E., & Fink, W. H. (2002). The dynamics, structure, and conformational free energy of proline-containing antifreeze glycoprotein. Biophysical Journal, 82, 2892–2905.
Yeh, Y., & Feeney, R. E. (1996). Antifreeze protein: structure and mechanisms of function. Chemical Reviews, 96, 601–618.
Nguyen, H., Le, L., & Ho, T. B. (2014). Computational study on ice growth inhibition of Antarctic bacterium antifreeze protein using coarse grained simulation. The Journal of Chemical Physics, 140, 225101.
Raymond, J. A. (2011). Algal ice-binding proteins change the structure of sea ice. Proceedings of the National Academy of Science of the United State of America, 108, E198.
Janech, M. G., Krell, A., Mock, T., Kang, J. S., & Raymond, J. A. (2006). Ice-binding proteins from sea ice diatoms (Bacillariophyceae). Journal of Phycology, 42, 410–416.
DeVries, A. L., Komatsu, S. K., & Feeney, R. E. (1970). Chemical and physical properties of freezing point depressing glycoproteins from Antarctic fishes. The Journal of Biological Chemistry, 245, 2901–2908.
Davies, P. L., Hew, C. L., & Fletcher, G. L. (1980). Fish antifreeze proteins: physiology and evolutionary biology. Canadian Journal of Zoology, 66, 2611–2617.
Marshall, C. B., Fletcher, G. L., & Davies, P. L. (2004). Hyperactive antifreeze protein in a fish. Nature, 429, 153.
Worrall, D., Elias, L., Ashford, D., Smallwood, M., Sidebottom, C., Lillford, P., Telford, J., Holt, C., & Bowles, D. (1998). A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science, 282, 115–117.
Atici, O., & Nalbantoglu, B. (2003). Antifreeze proteins in higher plants. Phytochemistry, 64, 1187–1196.
Griffith, M., & Yaish, M. W. F. (2004). Antifreeze proteins in overwintering plants: a tale of two activities. Trends in Plant Science, 9, 399–405.
Tomchaney, A. P., Morris, J. P., Kang, S. H., & Duman, J. G. (1982). Purification, composition, and physical properties of thermal hysteresis “antifreeze” protein from larvae of the beetle, Tenebrio molitor. Biochemistry, 21, 716–721.
Hew, C. L., Kao, M. H., So, Y.-P., & Lim, K.-P. (1983). Presence of cystine-containing antifreeze proteins in the spruce budworm, Choristoneura fumiferana. Canadian Journal of Zoology, 61, 2324–2328.
Schneppenheim, R., & Theede, H. (1980). Isolation and characterization of freezing-point depressing peptides from larvae of Tenebrio molitor. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 67, 561–568.
Duman, J. G., Bennett, V., Sformo, T., Hochstrasser, R., & Barnes, B. M. (2004). Antifreeze proteins in Alaskan insects and spiders. Journal of Insect Physiology, 50, 259–266.
Robinson, C. H. (2001). Cold adaptation in Arctic and Antarctic fungi. New Phytologist, 151, 341–353.
Gilbert, J. A., Hill, P. J., Dodd, C. E., & Laybourn-Parry, J. (2004). Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology, 150, 171–180.
Muryoi, N., Sato, M., Kaneko, S., Kawahara, H., Obata, H., Yaish, M. W. F., Yeh, Y., & Feeney, R. E. (1996). Antifreeze proteins: structures and mechanisms of function. Chemical Reviews, 96, 601–618.
Meister, K., Ebbinghaus, S., Xu, Y., John, G. D., DeVries, A., Gruebele, M., David, M. L., & Havenith, M. (2012). Long-range protein-water dynamics in hyperactive insect antifreeze proteins. Proceedings of the National Academy of Science of the United State of America, 110, 1617–1622.
Jorov, A., Zhorov, B. S., & Yang, D. S. (2004). Theoretical study of interaction of winter flounder antifreeze protein with ice. Protein Science, 13, 1524–1537.
Braslavsky, I., & Drori, R. (2013). LabVIEW-operated novel nanoliter osmometer for ice binding protein investigations. Journal of Visualized Experiments, 72, e4189.
John, G. D., & Olsen, T. M. (1993). Thermal hysteresis protein activity in bacteria, fungi and phylogenetically diverse plants. Cryobiology, 30, 322–328.
Fletcher, G. L., Hew, C. L., & Davies, P. L. (2001). Antifreeze proteins of teleost fishes. Annual Review Physiology, 63, 359–390.
Davies, P. L., Baardsnes, J., Kuiper, M. J., & Walker, V. K. (2002). Structure and function of antifreeze proteins. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 357, 927–935.
Christopher, P. G., Robert, L. C., & Peter, L. D. (2011). Anchored clathrate waters bind antifreeze proteins to ice. Proceedings of the National Academy of Science of the United State of America, 108, 7363–7367.
Devries, A. L., & Lin, Y. (1977). Structure of a peptide antifreeze and mechanism of adsorption to ice. Biochimica et Biophysica Acta, 495, 388–392.
Chao, H., Houston, M. E., Jr., Hodges, R. S., Kay, C. M., Sykes, B. D., Loewen, M. C., Davies, P. L., & Sönnichsen, F. D. (1997). A diminished role for hydrogen bonds in antifreeze protein binding to ice. Biochemistry, 36, 14652–14660.
Baardsnes, J., Kondejewski, L. H., Hodges, R. S., Chao, H., Kay, C., & Davies, P. L. (1999). New ice-binding face for type I antifreeze protein. FEBS Letters, 463, 87–91.
Nutt, D. R., & Smith, J. C. (2008). Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations. Journal of the American Chemical Society, 130, 13066–13073.
Gallagher, K. R., & Sharp, K. A. (2003). Analysis of thermal hysteresis protein hydration using the random network model. Biophysical Chemistry, 105, 195–209.
Smolin, N., & Daggett, V. (2008). Formation of ice-like water structure on the surface of an antifreeze protein. The Journal of Physical Chemistry B, 112, 6193–6202.
Wierzbicki, A., Dalal, P., Cheatham, T. E., 3rd, Knickelbein, J. E., Haymet, A. D., & Madura, J. D. (2007). Antifreeze proteins at the ice/water interface: three calculated discriminating properties for orientation of type I proteins. Biophysical Journal, 93, 1442–1451.
Yang, C., & Sharp, K. A. (2004). The mechanism of the type III antifreeze protein action: a computational study. Biophysical Chemistry, 109, 137–148.
Yang, C., & Sharp, K. A. (2005). Hydrophobic tendency of polar group hydration as a major force in type I antifreeze protein recognition. Proteins, 59, 266–274.
Garnham, C. P., Campbell, R. L., & Davies, P. L. (2011). Anchored clathrate waters bind antifreeze proteins to ice. Proceedings of the National Academy of Science of the United State of America, 108, 7363–7367.
Guo, S., Garnham, C. P., Partha, S. K., Campbell, R. L., Allingham, J. S., & Davies, P. L. (2013). Role of Ca2+ in folding the tandem β-sandwich extender domains of a bacterial ice-binding adhesion. FEBS Journal, 280, 5919–5932.
Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD-visual molecular dynamics. Molecular Graphics, 14, 33–38.
Siewert, J. M., Risselada, H. J., Yefimov, S., Tieleman, D. P., & Alex, H. D. (2007). The MARTINI force field: coarge grained model for biomolecular simulation. The Journal of Physical Chemistry B, 111, 7812–7824.
Le, L., & Molinero, V. (2011). Nanophase segregation in supercooled aqueous solutions and their glasses driven by the polyamorphism of water. The Journal of Physical Chemistry. A, 115, 5900–5907.
Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4, 435–447.
Darden, T., York, D., & Pedersen, J. (1993). Particle mesh Ewald: an Nlog (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98, 10089–10092.
Yesylevskyy, S. O., Schäfer, L. V., Sengupta, D., & Marrink, S. J. (2010). Polarizable water model for the coarse-grained MARTINI force field. PLoS Computational Biology, 6, e1000810.
Kar, R. K., & Bhunia, A. (2015). Biophysical and biochemical aspects of antifreeze proteins: using computational tools to extract atomistic information. Progress in Biophysics and Molecular Biology, 119, 194–204.
Kar, R. K., & Bhunia, A. (2015). Will it be beneficial to simulate the antifreeze proteins at ice freezing condition or at lower temperature? The Journal of Physical Chemistry B, 119, 11485–11495.
Sanz, E., Vega, C., Abascal, J. L. F., & MacDowell, L. G. (2004). Phase diagram of water from computer simulation. Physical Review Letters, 92, 255701.
Kofke, D. A., & Post, A. J. (1993). Hard particles in narrow pores. Transfer-matrix solution and the periodic narrow box. The Journal of Chemical Physics, 98, 1331–1336.
Berendsen, H. J. C., Postma, J. P. M., Gunsteren, W. F. V., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81, 3684–3690.
Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: a new molecular dynamics method. Journal of Applied Physics, 52, 7182–7190.
Hockney, R. W., Goel, S. P., & Eastwood, J. (1974). Quit high resolution computer models of plasma. Journal of Computational Physics, 14, 148–158.
Mu, Y., Nguyen, P. H., & Stock, G. (2005). Energy landscape of a small peptide revealed by dihedral angle principal component analysis. Proteins, 58, 45–52.
Nguyen, H., Van, T. D., & Le, L. (2015). Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp. Chemical Physics Letters, 638, 137–143.