Exploring the Effect of Ni as an Impurity on Fe-Rich Phases in Simulated Direct Chill Casting Al–Fe-Si Alloys
Tóm tắt
The influence of nickel at concentrations from 100 to 560 ppm on the microstructure of Al-0.15Si-0.3Fe-xNi alloy has been investigated. A Direct Chill (DC) simulator is used in the current study to simulate the actual cooling rate occurring in a commercial DC casting ingot. The main iron-rich phases observed in the microstructure of the base alloy are AlmFe, Al3Fe, α-AlFeSi, and globular AlFeSi particles. However, the addition of Ni in a range between 300–560 ppm results in the formation of newly reported Ni-containing phases such as pollen-shaped AlFeNiSi and Al6FeNi phases. In addition, Ni appeared to have a significant effect in transforming the Al3Fe phase into a Al9FeNi phase. Moreover, the addition of Ni shows a significant effect on promoting AlmFe and Al6Fe phases but lower Al3Fe phases at all cooling rates studied. The new AlFeNiSi phase volume fraction was significantly affected by cooling rate and Ni addition.
Tài liệu tham khảo
C.M. Allen, K.A.Q. O’Reilly, B. Cantor, P.V. Evans, Intermetallic phase selection in 1XXX Al alloys. Prog. Mater. Sci. 43(2), 89–170 (1998). https://doi.org/10.1016/S0079-6425(98)00003-6
M.W. Meredith, J. Worthm, J.M. Brown, R. G. Hamerton, Understanding DC-cast microstructures using laboratory-based solidification techniques. Light metals 2003 as held at the 132nd TMS annual meeting; (San Diego, CA, USA, 2003). pp. 1111–1118
C. A. Aliravci, J. E. Gruzleski, M.Ö. Pekgüleryüz, in A thermodynamic study of metastable Al-Fe phase formation in direct chill (DC)-cast aluminum alloy ingots. Ed by J.F.Grandfield, D.G. Eskin. Essential readings in light metals. (Springer, Cham, 2016) https://doi.org/10.1007/978-3-319-48228-6_58
J.I. Cho, C.W. Kim, The relationship between dendrite arm spacing and cooling rate of Al-Si casting alloys in high pressure die casting. Int. J. Met. 8, 49–55 (2014). https://doi.org/10.1007/BF03355571
M. Salarvand, S.M.A. Boutorabi, M. Pourgharibshahi et al., Effect of cooling rate on the microstructure and mechanical properties of high-zinc AA 5182 aluminum wrought alloy cast by the ablation green sand mold casting process. Int. J. Met. (2021). https://doi.org/10.1007/s40962-021-00578-8
C.A. Aliravci, M.Ö. Pekgüleryüz, Calculation of phase diagrams for the metastable Al-Fe phases forming in direct-chill (DC)-cast aluminum alloy ingots. Calphad. 22, 147–155 (1998)
P. Skjerpe, Intermetallic phases formed during DC-casting of an Al-0.25 Wt Pct Fe-0.13 Wt Pct Si alloy. Met. Trans. A. 18A, 189–200 (1987)
X. Liu, J. Qiao, Y. Wu, X. Liu, X. Bian, EPMA analysis of calcium-rich compounds in near eutectic Al–Si alloys. J. Alloys. Compd. 388, 83–90 (2005)
T.H. Ludwig, P.L. Schaffer, L. Arnberg, Influence of some trace elements on solidification path and microstructure of Al-Si foundry alloys. Metall. Mater. Trans. A. 44, 3783–3796 (2013). https://doi.org/10.1007/s11661-013-1694-y
J.Grandfield, L. Sweet, A. Beer, S. Zhu, X. Chen, M. Easton (2014).The effect of trace levels of Ni and V on the microstructure and properties of four common aluminum alloys. In TMS Light Metals, pp. 969–974
S.-M. Zhu, J.Y. Yao, E. Sweet, M.A. Easton, J.A. Taylor, P. Robinson, N.C. Parson, Influences of nickel and vanadium impurities on microstructure of aluminum alloys. JOM. 65(5), 584–592 (2013). https://doi.org/10.1007/s11837-013-0572-9
J.F. Grandfield, J.A. Taylor, The impact of rising Ni and V impurity levels in smelter grade aluminium and potential control strategies. Mater. Sci. Forum. 630, 129–136 (2009). https://doi.org/10.4028/www.scientific.net/msf.630.129
S. J. Mages, R. F. Cochrane, S. C. Flood, P. V. Evans, in The effect of trace elements on intermetallic phase selection in simulated DC castings, ed. by J Evans. Proceedings Light Metal, TMS annual Meeting 1995, (TMS, Point Clear, CA, USA 1995) 1039–1047
Z. Zhang, G. Li, X.-G. Chen, Effect of nickel and vanadium on iron bearing intermetallic phases in AA 5657 simulated DC castings. Mater. Sci. Technol. 30(8), 951–961 (2014). https://doi.org/10.1179/1743284713Y.0000000376
E. Elsharkawi, D. MacNeil, H. Mrad, X.G. Chen, Investigation of the effect of solidification rate on microstructure of Al-0.13Si-0.3Fe DC-cast alloy using EBSD and DSC techniques. Int. J. Mater. Res. 111(11), 931–937 (2020). https://doi.org/10.3139/146.111960
X.G. Chen, Light Metals (TMS, San Antonio, 1998), pp. 1071–1076
K. Liu, X. Cao, X.-G. Chen, A new iron-rich intermetallic-AlmFe phase in Al-4.6Cu-0.5Fe cast alloy. Metall. Mater. Trans. A. 43, 1097–1101 (2012)
P. Skjerpe, Intermetallic phases formed during DC-casting of an Al−0.25 Wt Pct Fe−0.13 Wt Pct Si alloy. Metall. Mater. Trans. A. 18, 189–200 (1987). https://doi.org/10.1007/BF02825700
W. Khalifa, F.H. Samuel, J.E. Gruzleski, Iron intermetallic phases in the Al corner of the Al-Si-Fe system. Metall. Mater. Trans. A. 34, 807–825 (2003). https://doi.org/10.1007/s11661-003-0116-y
M.V. Canté, C. Brito, J.E. Spinelli, A. Garcia, Interrelation of cell spacing, intermetallic compounds and hardness on a directionally solidified Al–10Fe–10Ni alloy. Mater. Des. 51, 342–346 (2013)
D Porter, STEM microanalysis of intermetallic phases in an Al--Fe--Si Alloy. Quant. Microanal. High Spat. Resolut. (1981) 94–100
N. A. Belov, D. G. Eskin, A. Andrey, Multicomponent phase diagrams: applications for commercial aluminum alloys
D. Hao, B. Hu, K. Zhang, L. Zhang, Y. Du, The quaternary Al–Fe–Ni–Si phase equilibria in Al-rich corner: experimental measurement and thermodynamic modeling. J. Mater. Sci. 49, 1157–1169 (2013)
I. Solli, Characterization of Iron bearing particles in relation to fir-tree structure in Al-Mg alloys, http://hdl.handle.net/11250/2576493
T. Koutsoukis, M.M. Makhlouf, Rendering wrought aluminium alloys castable by means of minimum composition adjustments. Int. J. Cast Met. Res. 30(4), 231–243 (2017). https://doi.org/10.1080/13640461.2017.1287645
N.A. Belov, A.A. Aksenov, D.G. Eskin, Iron in aluminum alloys: impurity and alloying element Ser Advances in metallic alloys, 2 (Taylor & Francis, London, 2002), p. 360
Z. Bian, S. Dai, Wu. Liang, Z. Chen, M. Wang, D. Chen, H. Wang, Thermal stability of Al–Fe–Ni alloy at high temperatures. J. Mat. Res. Tech. 8(3), 2538–2548 (2019)
T Mbuya, B. R. Mose, S. P. Ng’ang’a, S. M. Maranga, Improving the mechanical performance of a secondary cast aluminium piston alloy through addition of minor elements. (2010)
C.-L. Chen, R.C. Thomson, The combined use of EBSD and EDX analyses for the identification of complex intermetallic phases in multicomponent Al–Si piston alloys. J Alloy Compd. 490(1–2), 293–300 (2010). https://doi.org/10.1016/j.jallcom.2009.09.181
L.F. Mondolfo, Aluminum alloys: structure and properties (Butterworths and Co Ltd., London, 1976), p. 806. https://doi.org/10.1016/B978-0-408-70932-3.50404-6
T.O. Mbuya, B.O. Odera, S.P. Ng’ang’a, Influence of iron on castability and properties of aluminium silicon alloys: literature review. Int J Cast Met Res. 16, 451–465 (2003)
J. Huang, X. Zhou, J. Guo et al., Effect of Ni addition on the microstructure and mechanical properties of 6101 aluminum alloy with high electrical conductivity. J. of Materi Eng and Perform. (2022). https://doi.org/10.1007/s11665-022-06965-4
W.L. Mankins, S. Lamb, Nickel and nickel alloys, properties and selection: nonferrous alloys and special-purpose materials, Vol 2, ASM Handbook, By ASM Handbook Committee, ASM International, 1990, p 428–445, https://doi.org/10.31399/asm.hb.v02.a0001072.
D. Panahi, D.V. Malakhov, M. Gallerneault, P. Marois, Influence of cooling rate and composition on formation of intermetallic phases in solidifying Al–Fe–Si melts. Can. Metall. Q. 50(2), 173–180 (2011). https://doi.org/10.1179/000844311X12949291728096
X.C. Tong, H.S. Fang, Microstructure characteristics of a rapidly solidified AL-SI-TI-PB alloy. Mat. Charact. 37(2–3), 95–104 (1996)
D.C. Van Aken, H.L. Fraser, The Microstructure of Rapidly Solidified Hyper-eutectic Al-Be Alloys. Acta Metall. 33, 963–974 (1985)
W.J. Boettinger, L.A. Bendersky, R.J. Schaefer et al., On the formation of dispersoids during rapid solidification of an AI-Fe-Ni alloy. Metall. Mater. Trans. A. 19, 1101–1107 (1988). https://doi.org/10.1007/BF02628394