Khám phá các mô hình không gian của xu hướng lượng mưa và nhiệt độ tháng ở Philippines dựa trên lưới dữ liệu của Đơn vị Nghiên cứu Khí hậu

Spatial Information Research - Tập 26 - Trang 471-481 - 2018
Arnold R. Salvacion1,2, Damasa B. Magcale-Macandog3, Pompe C. Sta. Cruz4, Ronaldo B. Saludes5, Ireneo B. Pangga6, Christian Joseph R. Cumagun6
1Department of Community and Environmental Resource Planning, College of Human Ecology, University of the Philippines Los Baños, Los Banos, Philippines
2School of Environmental Science and Management, University of the Philippines Los Baños, Los Banos, Philippines
3Institute of Biological Sciences, College of Arts and Sciences, University of the Philippines Los Baños, Los Banos, Philippines
4Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Banos, Philippines
5Agrometeorology and Farm Structures Division, Institute of Agricultural Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, Los Banos, Philippines
6Institute of Weed Science, Entomology and Plant Pathology, College of Agriculture and Food Science, University of the Philippines Los Baños, Los Banos, Philippines

Tóm tắt

Nghiên cứu này đánh giá mô hình không gian của xu hướng lượng mưa và nhiệt độ tháng ở Philippines bằng cách sử dụng dữ liệu chuỗi thời gian từ Đơn vị Nghiên cứu Khí hậu. Dựa trên kết quả, có những xu hướng đáng kể về lượng mưa và nhiệt độ tháng trong cả nước. Trung bình, lượng mưa hàng tháng của đất nước đang gia tăng 0,34 mm/năm. Đối với nhiệt độ hàng tháng, mức tăng trung bình hàng năm là 0,008 và 0,019 °C, đối với nhiệt độ tối đa và tối thiểu, tương ứng. Về tỷ lệ, phần lớn diện tích của đất nước cho thấy xu hướng đáng kể về nhiệt độ hàng tháng (> 80%) so với lượng mưa (< 10%). Sự thay đổi về tháng ẩm nhất, khô nhất, ấm nhất và lạnh nhất cũng được quan sát giữa các giai đoạn 1951–1980 đến 1986–2015.

Từ khóa

#lượng mưa #nhiệt độ #xu hướng #Philippines #mô hình không gian #dữ liệu khí hậu

Tài liệu tham khảo

Cruz, F. T., Narisma, G. T., Villafuerte, M. Q., Cheng Chua, K. U., & Olaguera, L. M. (2013). A climatological analysis of the southwest monsoon rainfall in the Philippines. Atmospheric Research, 122, 609–616. https://doi.org/10.1016/j.atmosres.2012.06.010. Villafuerte, M. Q., Matsumoto, J., Akasaka, I., Takahashi, H. G., Kubota, H., & Cinco, T. A. (2014). Long-term trends and variability of rainfall extremes in the Philippines. Atmospheric Research, 137, 1–13. https://doi.org/10.1016/j.atmosres.2013.09.021. Cinco, T. A., de Guzman, R. G., Hilario, F. D., & Wilson, D. M. (2014). Long-term trends and extremes in observed daily precipitation and near surface air temperature in the Philippines for the period 1951–2010. Atmospheric Research, 145–146, 12–26. https://doi.org/10.1016/j.atmosres.2014.03.025. Manton, M. J., Della-Marta, P. M., Haylock, M. R., Hennessy, K. J., Nicholls, N., Chambers, L. E., et al. (2001). Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998. International Journal of Climatology, 21(3), 269–284. https://doi.org/10.1002/joc.610. Raziei, T., Daryabari, J., Bordi, I., Modarres, R., & Pereira, L. S. (2014). Spatial patterns and temporal trends of daily precipitation indices in Iran. Climatic Change, 124(1–2), 239–253. https://doi.org/10.1007/s10584-014-1096-1. Harris, I., Jones, P. D., Osborn, T. J., & Lister, D. H. (2014). Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 dataset. International Journal of Climatology, 34(3), 623–642. https://doi.org/10.1002/joc.3711. New, M., Hulme, M., Jones, P., New, M., Hulme, M., & Jones, P. (1999, March 1). Representing twentieth-century space–Time climate variability. Part I: Development of a 1961–1990 mean monthly terrestrial climatology. http://dx.doi.org/10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2.research-article. Retrieved April 7, 2017, from http://journals.ametsoc.org/doi/abs/10.1175/1520-0442(1999)012%3C0829%3ARTCSTC%3E2.0.CO%3B2. Shi, H., Li, T., & Wei, J. (2017). Evaluation of the gridded CRU TS precipitation dataset with the point rain gauge records over the three-river headwaters region. Journal of Hydrology, 548, 322–332. https://doi.org/10.1016/j.jhydrol.2017.03.017. Salvacion, A. R., Macandog, D. M., Sta. Cruz, P. C., Saludes, R. B., Pangga, I. B., & Cumagun, C. J. R. (2018). (Submitted) Evaluation and spatial downscaling of CRU TS precipitation data in the Philippines. Immerzeel, W. (2008). Historical trends and future predictions of climate variability in the Brahmaputra basin. International Journal of Climatology, 28(2), 243–254. https://doi.org/10.1002/joc.1528. Jones, P. D., Harpham, C., Harris, I., Goodess, C. M., Burton, A., Centella-Artola, A., et al. (2016). Long-term trends in precipitation and temperature across the Caribbean. International Journal of Climatology, 36(9), 3314–3333. https://doi.org/10.1002/joc.4557. Philandras, C. M., Nastos, P. T., Kapsomenakis, J., Douvis, K. C., Tselioudis, G., & Zerefos, C. S. (2011). Long term precipitation trends and variability within the Mediterranean region. Natural Hazards and Earth System Sciences, 11(12), 3235–3250. https://doi.org/10.5194/nhess-11-3235-2011. Ongoma, V., & Chen, H. (2017). Temporal and spatial variability of temperature and precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129(2), 131–144. https://doi.org/10.1007/s00703-016-0462-0. Theil, H. (1992). A rank-invariant method of linear and polynomial regression analysis. In B. Raj & J. Koerts (Eds.), Henri Theil’s contributions to economics and econometrics (Vol. 23, pp. 345–381). Springer, Dordrecht, Netherlands. Retrieved from http://dx.doi.org/10.1007/978-94-011-2546-8_20. Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363. https://doi.org/10.1016/j.jhydrol.2007.11.009. de Luis, M., Čufar, K., Saz, M. A., Longares, L. A., Ceglar, A., & Kajfež-Bogataj, L. (2014). Trends in seasonal precipitation and temperature in Slovenia during 1951–2007. Regional Environmental Change, 14(5), 1801–1810. https://doi.org/10.1007/s10113-012-0365-7. Espírito Santo, F., Ramos, A. M., de Lima, M. I. P., & Trigo, R. M. (2014). Seasonal changes in daily precipitation extremes in mainland Portugal from 1941 to 2007. Regional Environmental Change, 14(5), 1765–1788. https://doi.org/10.1007/s10113-013-0515-6. Sayemuzzaman, M., & Jha, M. K. (2014). Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmospheric Research, 137, 183–194. https://doi.org/10.1016/j.atmosres.2013.10.012. Hijmans, R. J. (2014). Raster: Geographic data analysis and modeling. R package version 2.3-12. Retrieved from http://CRAN.R-project.org/package=raster. Ihaka, R., & Gentleman, R. (1996). R: A language for data analysis and graphics. Journal of Computational and Graphical Statistics, 5(3), 299–314. https://doi.org/10.1080/10618600.1996.10474713. R Core Team. (2014). R: A language and environment for statistical computing. R foundation for statistical computing. Retrieved from http://www.R-project.org/. Pohlert, T. (2017). Trend: Non-parametric trend tests and change-point detection. Retrieved from https://CRAN.R-project.org/package=trend. McLeod, A. (2011). Kendall: Kendall rank correlation and Mann-Kendall trend test. Retrieved from http://CRAN.R-project.org/package=Kendall. Wickham, H. (2009). ggplot2. New York, NY: Springer. Retrieved from http://link.springer.com/10.1007/978-0-387-98141-3. Neuwirth, E. (2014). RColorBrewer: ColorBrewer palettes. R package version 1.1-2. Retrieved from http://CRAN.R-project.org/package=RColorBrewer. IPCC. (2007). IPCC, 2007: Summary for policymakers. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge: Cambridge University Press. D’Oria, M., Ferraresi, M., & Tanda, M. G. (2017). Historical trends and high-resolution future climate projections in northern Tuscany (Italy). Journal of Hydrology, 555(Supplement C), 708–723. https://doi.org/10.1016/j.jhydrol.2017.10.054. Abahous, H., Ronchail, J., Sifeddine, A., Kenny, L., & Bouchaou, L. (2017). Trend and change point analyses of annual precipitation in the Souss-Massa Region in Morocco during 1932–2010. Theoretical and Applied Climatology. https://doi.org/10.1007/s00704-017-2325-0. Markonis, Y., Batelis, S. C., Dimakos, Y., Moschou, E., & Koutsoyiannis, D. (2017). Temporal and spatial variability of rainfall over Greece. Theoretical and Applied Climatology, 130(1), 217–232. https://doi.org/10.1007/s00704-016-1878-7. He, Y., Tian, P., Mu, X., Gao, P., Zhao, G., Wang, F., et al. (2017). Changes in daily and monthly rainfall in the Middle Yellow River, China. Theoretical and Applied Climatology, 129(1), 139–148. https://doi.org/10.1007/s00704-016-1763-4. Kumar, S., Machiwal, D., & Dayal, D. (2017). Spatial modelling of rainfall trends using satellite datasets and geographic information system. Hydrological Sciences Journal, 62(10), 1636–1653. https://doi.org/10.1080/02626667.2017.1304643. Machiwal, D., & Jha, M. K. (2017). Evaluating persistence and identifying trends and abrupt changes in monthly and annual rainfalls of a semi-arid region in Western India. Theoretical and Applied Climatology, 128(3), 689–708. https://doi.org/10.1007/s00704-016-1734-9. Rahman, M. A., Yunsheng, L., & Sultana, N. (2017). Analysis and prediction of rainfall trends over Bangladesh using Mann-Kendall, Spearman’s rho tests and ARIMA model. Meteorology and Atmospheric Physics, 129(4), 409–424. https://doi.org/10.1007/s00703-016-0479-4. Mullens, E. D., Shafer, M., & Hocker, J. (2013). Trends in heavy precipitation in the southern USA. Weather, 68(12), 311–316. https://doi.org/10.1002/wea.2113. Trenberth, K. (2011). Changes in precipitation with climate change. Climate Research, 47(1), 123–138. https://doi.org/10.3354/cr00953. Bagtasa, G. (2017). Contribution of tropical cyclones to rainfall in the Philippines. Journal of Climate, 30(10), 3621–3633. https://doi.org/10.1175/JCLI-D-16-0150.1. Brito, T. T., Oliveira-Júnior, J. F., Lyra, G. B., Gois, G., & Zeri, M. (2017). Multivariate analysis applied to monthly rainfall over Rio de Janeiro state, Brazil. Meteorology and Atmospheric Physics, 129(5), 469–478. https://doi.org/10.1007/s00703-016-0481-x. Putnam, A. E., & Broecker, W. S. (2017). Human-induced changes in the distribution of rainfall. Science Advances. https://doi.org/10.1126/sciadv.1600871.