Exploring process-level genotypic and environmental effects on sugarcane yield using an international experimental dataset
Tài liệu tham khảo
Allison, 2007, Why does sugarcane (Saccharum sp. hybrid) grow slowly?, S. Afr. J. Bot., 73, 546, 10.1016/j.sajb.2007.04.065
Bezuidenhout, 2003, A process-based model to simulate changes in tiller density and light interception of sugarcane crops, Agric. Syst., 76, 589, 10.1016/S0308-521X(02)00076-8
Bonnett, 1998, Rate of leaf appearance in sugarcane, including a comparison of a range of varieties, Funct. Plant Biol., 25, 829, 10.1071/PP98041
Boote, 2010, The role of crop systems simulation in agriculture and environment, Int. J. Agric. Env. Info. Sys. (IJAEIS), 1, 41, 10.4018/jaeis.2010101303
Hammer, 2007, An integrated systems approach to crop improvement, 45
Hoffman, 2018, Predicting genotypic differences in irrigated sugarcane yield using the Canegro model and independent trait parameter estimates, Eur. J. Agron., 96, 13, 10.1016/j.eja.2018.01.005
Inman-Bamber, 1994, Temperature and seasonal effects on canopy development and light interception of sugarcane, Field Crop Res., 36, 41, 10.1016/0378-4290(94)90051-5
Inman-Bamber, 1991, A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance, S. Afr. J. Plant Soil, 1862, 37
Inman-Bamber, 2016, Sugarcane for water-limited environments: enhanced capability of the APSIM sugarcane model for assessing traits for transpiration efficiency and root water supply, Field Crop Res., 196, 112, 10.1016/j.fcr.2016.06.013
Jones, 2018, Refining the Canegro model for improved simulation of climate change impacts on sugarcane, Eur. J. Agron., 10.1016/j.eja.2017.12.009
Jones, 2014, Evaluation of the DSSAT-Canegro model for simulating climate change impacts at sites in seven countries, Proc. S. Afr. Sugar Technol. Assoc., 87, 323
Keating, 1999, Modelling sugarcane production systems I. Development and performance of the sugarcane module, Field Crop Res., 61, 253, 10.1016/S0378-4290(98)00167-1
Kim, 2010, Regulation of tillering in sorghum: environmental effects, Ann. Bot., 106, 57, 10.1093/aob/mcq079
Lafarge, 2002, Tillering in grain Sorghum over a wide range of population densities: modelling dynamics of tiller fertility, Ann. Bot., 90, 99, 10.1093/aob/mcf153
Marin, 2011, Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane, Agron. J., 103, 304, 10.2134/agronj2010.0302
Marin, 2013, Climate change impacts on sugarcane attainable yield in southern Brazil, Clim. Change, 117, 227, 10.1007/s10584-012-0561-y
Marin, 2015, Sugarcane model intercomparison: structural differences and uncertainties under current and potential future climates, Environ. Model. Softw., 72, 372, 10.1016/j.envsoft.2015.02.019
Martiné, 1999, Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass, Agronomie, 19, 3, 10.1051/agro:19990101
Martiné, 2004, Le modèle de croissance mosicas et sa plateforme de simulation simulex: état des lieux et perspectives, 133
Mebane, 2011, Genetic optimization using derivatives: the {rgenoud} package for {R}, J. Stat. Softw., 42, 1, 10.18637/jss.v042.i11
Ngobese, 2018, Quantifying sugarcane cultivar differences in tiller and stalk phenology: identifying traits suited to crop model-assisted breeding, J. Crop Improv., 32, 847, 10.1080/15427528.2018.1534762
Nix, 1976, Climate and crop productivity in Australia, Int. Rice Res. Inst. Clim. rice
Poser, 2019
R Core Team, 2016
Sexton, 2017, A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia, Eur. J. Agron., 88, 96, 10.1016/j.eja.2015.11.009
Sinclair, 2004, Sugarcane leaf area development under field conditions in Florida, USA, Field Crop Res., 88, 171, 10.1016/j.fcr.2003.12.005
Singels, 2013
Singels, 2002, A new method of simulating dry matter partitioning in the Canegro sugarcane model, Field Crop Res., 78, 151, 10.1016/S0378-4290(02)00118-1
Singels, 2000, A simple model of unstressed sugarcane canopy development, Proc. S. Afr. Sugar Technol. Assoc., 74, 151
Singels, 2005, Improving biomass production and partitioning in sugarcane: theory and practice, Field Crop Res., 92, 291, 10.1016/j.fcr.2005.01.022
Singels, 2016, Sugarcane genetic trait parameter estimation, 143
Singels, 2008
Singels, 2017
Singels, 2009, Sugarcane response to row spacing-induced competition for light, Field Crop Res., 113, 149, 10.1016/j.fcr.2009.04.015
Singels, 2005, The effect of crop start date, crop class and cultivar on sugarcane canopy development and radiation interception, Field Crop Res., 92, 249, 10.1016/j.fcr.2005.01.028
Smit, 2010, Characterising the factors that affect germination and emergence in sugarcane, Proc. S. Afr. Sugar Technol. Assoc., 83, 230
Thorburn, 2014, Evaluation of the APSIM-Sugar model for simulating sugarcane yield at sites in seven countries: initial results, Proc. S. Afr. Sugar Technol. Assoc., 87, 318
Yin, 2004, Role of crop physiology in predicting gene-to-phenotype relationships, Trends Plant Sci., 9, 426, 10.1016/j.tplants.2004.07.007
Zhou, 2003, Physiological parameters for modelling differences in canopy development between sugarcane cultivars, Proc. S. Afr. Sugar Technol. Assoc., 77, 610