Exploring process-level genotypic and environmental effects on sugarcane yield using an international experimental dataset

Field Crops Research - Tập 244 - Trang 107622 - 2019
M.R. Jones1,2, A. Singels1,2, S. Chinorumba3, A. Patton1, C. Poser4, M. Singh5, J.F. Martiné4, M. Christina4, J. Shine5, J. Annandale2, G. Hammer6
1South African Sugarcane Research Institute, Private Bag X02, Mount Edgecombe 4300, South Africa
2Department of Plant and Soil Sciences, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
3Zimbabwe Sugar Association Experiment Station (ZSAES), P. Bag 7006, Chiredzi, Zimbabwe
4Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Persyst UPR SCA, Station de La Bretagne - BP 20, F97408 Saint-Denis, Messagerie Cedex 9, La Réunion, France
5Sugarcane Industry Research Committee (SIRC), c/o Sugarcane Growers Cooperative of Florida, 1500 George Wedgworth Way, Belle Glade, FL, 33430, USA
6ARC Centre of Excellence for Translational Photosynthesis, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld, 4072, Australia

Tài liệu tham khảo

Allison, 2007, Why does sugarcane (Saccharum sp. hybrid) grow slowly?, S. Afr. J. Bot., 73, 546, 10.1016/j.sajb.2007.04.065 Bezuidenhout, 2003, A process-based model to simulate changes in tiller density and light interception of sugarcane crops, Agric. Syst., 76, 589, 10.1016/S0308-521X(02)00076-8 Bonnett, 1998, Rate of leaf appearance in sugarcane, including a comparison of a range of varieties, Funct. Plant Biol., 25, 829, 10.1071/PP98041 Boote, 2010, The role of crop systems simulation in agriculture and environment, Int. J. Agric. Env. Info. Sys. (IJAEIS), 1, 41, 10.4018/jaeis.2010101303 Hammer, 2007, An integrated systems approach to crop improvement, 45 Hoffman, 2018, Predicting genotypic differences in irrigated sugarcane yield using the Canegro model and independent trait parameter estimates, Eur. J. Agron., 96, 13, 10.1016/j.eja.2018.01.005 Inman-Bamber, 1994, Temperature and seasonal effects on canopy development and light interception of sugarcane, Field Crop Res., 36, 41, 10.1016/0378-4290(94)90051-5 Inman-Bamber, 1991, A growth model for sugar-cane based on a simple carbon balance and the CERES-Maize water balance, S. Afr. J. Plant Soil, 1862, 37 Inman-Bamber, 2016, Sugarcane for water-limited environments: enhanced capability of the APSIM sugarcane model for assessing traits for transpiration efficiency and root water supply, Field Crop Res., 196, 112, 10.1016/j.fcr.2016.06.013 Jones, 2018, Refining the Canegro model for improved simulation of climate change impacts on sugarcane, Eur. J. Agron., 10.1016/j.eja.2017.12.009 Jones, 2014, Evaluation of the DSSAT-Canegro model for simulating climate change impacts at sites in seven countries, Proc. S. Afr. Sugar Technol. Assoc., 87, 323 Keating, 1999, Modelling sugarcane production systems I. Development and performance of the sugarcane module, Field Crop Res., 61, 253, 10.1016/S0378-4290(98)00167-1 Kim, 2010, Regulation of tillering in sorghum: environmental effects, Ann. Bot., 106, 57, 10.1093/aob/mcq079 Lafarge, 2002, Tillering in grain Sorghum over a wide range of population densities: modelling dynamics of tiller fertility, Ann. Bot., 90, 99, 10.1093/aob/mcf153 Marin, 2011, Parameterization and evaluation of predictions of DSSAT/CANEGRO for Brazilian sugarcane, Agron. J., 103, 304, 10.2134/agronj2010.0302 Marin, 2013, Climate change impacts on sugarcane attainable yield in southern Brazil, Clim. Change, 117, 227, 10.1007/s10584-012-0561-y Marin, 2015, Sugarcane model intercomparison: structural differences and uncertainties under current and potential future climates, Environ. Model. Softw., 72, 372, 10.1016/j.envsoft.2015.02.019 Martiné, 1999, Simulation of the maximum yield of sugar cane at different altitudes: effect of temperature on the conversion of radiation into biomass, Agronomie, 19, 3, 10.1051/agro:19990101 Martiné, 2004, Le modèle de croissance mosicas et sa plateforme de simulation simulex: état des lieux et perspectives, 133 Mebane, 2011, Genetic optimization using derivatives: the {rgenoud} package for {R}, J. Stat. Softw., 42, 1, 10.18637/jss.v042.i11 Ngobese, 2018, Quantifying sugarcane cultivar differences in tiller and stalk phenology: identifying traits suited to crop model-assisted breeding, J. Crop Improv., 32, 847, 10.1080/15427528.2018.1534762 Nix, 1976, Climate and crop productivity in Australia, Int. Rice Res. Inst. Clim. rice Poser, 2019 R Core Team, 2016 Sexton, 2017, A global sensitivity analysis of cultivar trait parameters in a sugarcane growth model for contrasting production environments in Queensland, Australia, Eur. J. Agron., 88, 96, 10.1016/j.eja.2015.11.009 Sinclair, 2004, Sugarcane leaf area development under field conditions in Florida, USA, Field Crop Res., 88, 171, 10.1016/j.fcr.2003.12.005 Singels, 2013 Singels, 2002, A new method of simulating dry matter partitioning in the Canegro sugarcane model, Field Crop Res., 78, 151, 10.1016/S0378-4290(02)00118-1 Singels, 2000, A simple model of unstressed sugarcane canopy development, Proc. S. Afr. Sugar Technol. Assoc., 74, 151 Singels, 2005, Improving biomass production and partitioning in sugarcane: theory and practice, Field Crop Res., 92, 291, 10.1016/j.fcr.2005.01.022 Singels, 2016, Sugarcane genetic trait parameter estimation, 143 Singels, 2008 Singels, 2017 Singels, 2009, Sugarcane response to row spacing-induced competition for light, Field Crop Res., 113, 149, 10.1016/j.fcr.2009.04.015 Singels, 2005, The effect of crop start date, crop class and cultivar on sugarcane canopy development and radiation interception, Field Crop Res., 92, 249, 10.1016/j.fcr.2005.01.028 Smit, 2010, Characterising the factors that affect germination and emergence in sugarcane, Proc. S. Afr. Sugar Technol. Assoc., 83, 230 Thorburn, 2014, Evaluation of the APSIM-Sugar model for simulating sugarcane yield at sites in seven countries: initial results, Proc. S. Afr. Sugar Technol. Assoc., 87, 318 Yin, 2004, Role of crop physiology in predicting gene-to-phenotype relationships, Trends Plant Sci., 9, 426, 10.1016/j.tplants.2004.07.007 Zhou, 2003, Physiological parameters for modelling differences in canopy development between sugarcane cultivars, Proc. S. Afr. Sugar Technol. Assoc., 77, 610