Exploring heavy fermions from macroscopic to microscopic length scales

Nature Reviews Materials - Tập 1 Số 10
S. Wirth1, F. Steglich2,3,1
1Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
2Center for Correlated Matter, Zhejiang University, Hangzhou, China
3Institute of Physics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Meissner, W. & Voigt, B. Messungen mit Hilfe von flüssigem Helium, X. I. Widerstand der reinen Metalle in tiefen Temperaturen. Ann. Phys. 399, 761–797 (in German) (1930).

de Haas, W. J., de Boer, J. & van den Berg, G. J. The electrical resistance of gold, copper and lead at low temperatures. Physica 1, 1115–1124 (1934).

MacDonald, D. K. C., Pearson, W. B. & Templeton, I. M. Thermo-electricity at low temperatures, transition metals as solute and solvent. Proc. Roy. Soc. 266, 161–184 (1962).

Kondo, J. Resistance minimum in dilute magnetic alloys. Prog. Theor. Phys. 32, 37–49 (1964).

Wilson, K. G. The renormalization-group and critical phenomena. Rev. Mod. Phys. 55, 583–600 (1983).

Nozières, P. Fermi-liquid description of Kondo problem at low temperatures. J. Low Temp. Phys. 17, 31–42 (1974).

Triplett, B. B. & Phillips, N. E. Calorimetric evidence for a singlet ground state in CuCr and CuFe. Phys. Rev. Lett. 27, 1001–1004 (1971).

Daybell, M. D. & Steyert, W. A. Localized magnetic impurity states in metals: some experimental relationships. Rev. Mod. Phys. 40, 380–389 (1968).

Riblet, G. & Winzer, K. Vanishing of superconductivity below a second transition temperature in (La1−xCex)Al2 alloys due to Kondo effect. Solid State Commun. 9, 1663–1665 (1971).

Maple, M. B. et al. The re-entrant superconducting-normal phase boundary of the Kondo system (La, Ce)Al2 . Solid State Commun. 11, 829–834 (1972).

Steglich, F. & Armbrüster, H. Evidence for intermediate temperature superconductivity as a bulk effect. Solid State Commun. 14, 903–906 (1974).

Moeser, J., Steglich, F. & von Minnigerode, G. Giant thermoelectric-power of (La, Ce)Al2 . J. Low Temp. Phys. 15, 91–98 (1974).

Maple, M. B. in Magnetism vol. 5 (ed. Suhl, H. ) 289–326 (Academic Press, 1973).

Bredl, C. D., Steglich, F. & Schotte, K. D. Specific-heat of concentrated Kondo systems: (La, Ce)Al2 and CeAl2 . Z. Phys. B 29, 327–340 (1978).

Andres, K., Graebner, J. E. & Ott, H. R. 4f-virtual-bound-state formation in CeAl3 at low temperatures. Phys. Rev. Lett. 35, 1779–1782 (1975).

Ruderman, M. A. & Kittel, C. Indirect exchange coupling of nuclear moments by conduction electrons. Phys. Rev. 96, 99–102 (1954).

Kasuya, T. A theory of ferromagnetism and antiferromagnetism in Zeners model. Prog. Theor. Phys. 16, 45–57 (1956).

Yosida, K. Magnetic properties of Cu–Mn alloys. Phys. Rev. 106, 893–898 (1957).

Doniach, S. Kondo lattice and weak antiferromagnetism. Phys. B 91, 231–234 (1977).

Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

Brandt, N. B. & Moshchalkov, V. V. Concentrated Kondo systems. Adv. Phys. 33, 373–467 (1984).

Lee, P. A., Rice, T. M., Serene, J. W., Sham, L. J. & Wilkins, J. W. Theories of heavy-electron systems. Comments Condens. Matter Phys. 12, 99–161 (1986).

Ott, H. R. in Progress in Low Temperature Physics vol. 11 215–289 (Elsevier, 1987).

Fulde, P., Keller, J. & Zwicknagl, G. Theory of heavy fermion systems. Solid State Phys. 41, 1–150 (1988).

Grewe, N. & Steglich, F. Handbook on the Physics and Chemistry of Rare Earths Vol. 14 (eds Gschneidner Jr., K. A. & Eyring, L. ) 343–474 (Elsevier, 1991).

Hewson, A. C. The Kondo Problem to Heavy Fermions Vol. 2 (Cambridge Univ. Press, 1993).

Kitaoka, Y. & Kuramoto, Y. Dynamics of Heavy Electrons Vol. 105 (Oxford Univ. Press, 2000).

Schofield, A. J. Non-Fermi liquids. Contemp. Phys. 40, 95–115 (1999).

Stewart, G. R. Non-Fermi-liquid behavior in d - and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001)

Senthil, T., Vojta, M. & Sachdev, S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points. Phys. Rev. B 69, 035111 (2004).

Pfleiderer, C. Superconducting phases of f -electron compounds. Rev. Mod. Phys. 81, 1551–1624 (2009).

Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

Zwicknagl, G. Quasi-particles in heavy fermion systems. Adv. Phys. 41, 203–302 (1992).

Zwicknagl, G. Field-induced suppression of the heavy-fermion state in YbRh2Si2 . J. Phys. Condens. Matter 23, 094215 (2011).

Reinders, P. H. P., Springford, M., Coleridge, P. T., Boulet, R. & Ravot, D. de Haas–van Alphen effect in the heavy-electron compound CeCu6 . Phys. Rev. Lett. 57, 1631–1634 (1986).

Taillefer, L. & Lonzarich, G. G. Heavy-fermion quasiparticles in UPt3 . Phys. Rev. Lett. 60, 1570–1573 (1988).

King, C. A. & Lonzarich, G. G. Quasi-particles properties in ferromagnetic CeRu2Ge2 . Phys. B 171, 161–165 (1991).

Aoki, H., Uji, S., Albessard, A. K. & O-nuki, Y. Transition of f electron nature from itinerant to localized: metamagnetic transition in CeRu2Si2 studied via the de Haas–van Alphen effect. Phys. Rev. Lett. 71, 2110–2113 (1993).

Kummer, K. et al. Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2 . Phys. Rev. X 5, 011028 (2015).

Paschen, S. et al. Kondo destruction in heavy fermion quantum criticality and the photoemission spectrum of YbRh2Si2 . J. Magn. Magn. Mater. 400, 17–22 (2016).

Hoffman, J. E. Spectroscopic scanning tunneling microscopy insights into Fe-based superconductors. Rep. Prog. Phys. 74, 124513 (2011).

Yuan, T., Figgins, J. & Morr, D. K. Hidden order transition in URu2Si2: evidence for the emergence of a coherent anderson lattice from scanning tunneling spectroscopy. Phys. Rev. B 86, 035129 (2012).

Mydosh, J. A. & Oppeneer, P. M. Hidden order behaviour in URu2Si2 (a critical review of the status of hidden order in 2014). Phil. Mag. 94, 3642–3662 (2014).

Schmidt, A. R. et al. Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2 . Nature 465, 570–576 (2010).

Ayanjian, P. et al. Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2 . Proc. Natl Acad. Sci. USA 107, 10383–10388 (2010).

Hamidian, M. H. et al. How Kondo-holes create intense nanoscale heavy-fermion hybridization disorder. Proc. Natl Acad. Sci. USA 108, 18233–18237 (2011).

Figgins, J. & Morr, D. K. Defects in heavy fermion materials: unveiling strong correlations in real space. Phys. Rev. Lett. 107, 066401 (2011).

Martin, R. M. Fermi-surface sum-rule and its consequences for periodic Kondo and mixed-valence systems. Phys. Rev. Lett. 48, 362–365 (1982).

Nozières, P. & Blandin, A. Kondo effect in real metals. J. Phys. Paris 41, 193–211 (1980).

Schlottmann, P. & Sacramento, P. D. Multichannel Kondo problem and some applications. Adv. Phys. 42, 641–682 (1993).

Oreg, Y. & Goldhaber-Gordon, D. Two-channel Kondo effect in a modified single electron transistor. Phys. Rev. Lett. 90, 136602 (2003).

Parks, J. J. et al. Mechanical control of spin states in spin-1 molecules and the underscreened Kondo effect. Science 328, 1370–1373 (2010).

Sugawara, T. & Eguchi, H. Low temperature resistivity, magnetic susceptibility and superconducting transition temperature in La containing rare-earth impurities. J. Phys. Soc. Jpn 21, 725–732 (1966).

Cochrane, R. W., Ström-Olsen, J. O., Williams, G. & Ho, S. C. LuGd: a positive-exchange-constant Kondo system. Phys. Rev. B 17, 254–256 (1978).

Lieke, W., Steglich, F., Rander, K. & Keiter, H. Transport properties of a reverse Kondo alloy at finite magnetic field experiment and theory. Phys. Rev. B 20, 2129–2141 (1979).

Zhang, Y.-H. et al. Temperature and magnetic field dependence of a Kondo system in the weak coupling regime. Nat. Commun. 4, 2110 (2013).

Coleman, P. & Schofield, A. J. Quantum criticality. Nature 433, 226–229 (2005).

Transitions in focus [Editorial]. Nat. Phys. 4, 157–204 (2008).

Sachdev, S. Quantum Phase Transitions (Cambridge Univ. Press, 2011).

Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

Keimer, B., Kivelson, S. A., Norman, M. R., Uchida, S. & Zaanen, J. From quantum matter to high-temperature superconductivity in copper oxides. Nature 518, 179–186 (2015).

Hertz, J. A. Quantum critical phenomena. Phys. Rev. B 14, 1165–1184 (1976).

Millis, A. J. Effect of a nonzero temperature on quantum critical-points in itinerant fermion systems. Phys. Rev. B 48, 7183–7196 (1993).

Moriya, T. & Takimoto, T. Anomalous properties around magnetic instability in heavy-electron systems. J. Phys. Soc. Jpn 64, 960–969 (1995).

Lonzarich, G. G. in Electron (ed. Springford, M. ) 109–147 (Cambridge Univ. Press, 1997).

von Löhneysen, H., Rosch, A., Vojta, M. & Wölfle, P. Fermi-liquid instabilities at magnetic quantum phase transitions. Rev. Mod. Phys. 79, 1015–1075 (2007).

Gegenwart, P., Steglich, F. & Si, Q. Quantum criticality in heavy-fermion metals. Nat. Phys. 4, 186–197 (2008).

Scalapino, D. J., Loh Jr, E. & Hirsch, J. E. d-wave pairing near a spin-density-wave instability. Phys. Rev. B 34, 8190–8192 (1986).

Monthoux, P. & Lonzarich, G. G. Magnetically mediated superconductivity: crossover from cubic to tetragonal lattice. Phys. Rev. B 66, 224504 (2002).

Küchler, R. et al. Divergence of the Grüneisen ratio at quantum critical points in heavy fermion metals. Phys. Rev. Lett. 91, 066405 (2003).

Gegenwart, P. et al. Non-Fermi-liquid effects at ambient pressure in a stoichiometric heavy-fermion compound with very low disorder: CeNi2Ge2 . Phys. Rev. Lett. 82, 1293–1296 (1999).

Rosch, A. Interplay of disorder and spin fluctuations in the resistivity near a quantum critical point. Phys. Rev. Lett. 82, 4280–4283 (1999).

Steglich, F. et al. Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2 . Phys. Rev. Lett. 43, 1892–1896 (1979).

Arndt, J. et al. Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point. Phys. Rev. Lett. 106, 246401 (2011).

Stockert, O. et al. Nature of the A phase in CeCu2Si2 . Phys. Rev. Lett. 92, 136401 (2004).

Stockert, O. et al. Magnetically driven superconductivity in CeCu2Si2 . Nat. Phys. 7, 119–124 (2011).

Stockert, O., Kirchner, S., Steglich, F. & Si, Q. Superconductivity in Ce- and U-based 122 heavy-fermion compounds. J. Phys. Soc. Jpn 81, 011001 (2012).

Nishiyama, S., Miyake, K. & Varma, C. M. Superconducting transition temperatures for spin-fluctuation superconductivity: application to heavy-fermion compounds. Phys. Rev. B 88, 014510 (2013).

Enayat, M. et al. Superconducting gap and vortex lattice of the heavy fermion compound CeCu2Si2 . Phys. Rev. B 93, 045123 (2016).

Kittaka, S. et al. Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2 . Phys. Rev. Lett. 112, 067002 (2014).

Pang, G. M. et al. Evidence for fully gapped d-wave superconductivity in CeCu2Si2. Preprint at https://arxiv.org/abs/1605.04786 (2016).

Küchler, R. et al. Quantum criticality in the cubic heavy-fermion system CeIn3−xSnx . Phys. Rev. Lett. 96, 256403 (2006).

Knafo, W., Raymond, S., Lejay, P. & Flouquet, J. Antiferromagnetic criticality at a heavy-fermion quantum phase transition. Nat. Phys. 5, 753–757 (2009).

Petrovic, C. et al. Heavy-fermion superconductivity in CeCoIn5 at 2.3 K. J. Phys. Condens. Matter 13, L337–L342 (2001).

Thompson, J. D. & Fisk, Z. Progress in heavy-fermion superconductivity: Ce115 and related materials. J. Phys. Soc. Jpn 81, 011002 (2012).

Park, T. et al. Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5 . Nature 440, 65–68 (2006).

Kenzelmann, M. et al. Coupled superconducting and magnetic order in CeCoIn5 . Science 321, 1652–1654 (2008).

Broun, D. M. What lies beneath the dome? Nat. Phys. 4, 170–172 (2008).

Allan, M. P. et al. Imaging Cooper pairing of heavy fermions in CeCoIn5 . Nat. Phys. 9, 468–473 (2013).

Zhou, B. B. et al. Visualizing nodal heavy fermion superconductivity in CeCoIn5 . Nat. Phys. 9, 474–479 (2013).

Izawa, K. et al. Angular position of nodes in the superconducting gap of quasi-2D heavy-fermion superconductor CeCoIn5 . Phys. Rev. Lett. 87, 057002 (2001).

An, K. et al. Sign reversal of field-angle resolved heat capacity oscillations in a heavy fermion superconductor CeCoIn5 and d x²−y² pairing symmetry. Phys. Rev. Lett. 104, 037002 (2010).

Aynajian, P. et al. Visualizing heavy fermions emerging in a quantum critical Kondo lattice. Nature 486, 201–206 (2012).

van Dyke, J. S. et al. Direct evidence for a magnetic f-electron-mediated pairing mechanism of heavy-fermion superconductivity in CeCoIn5 . Proc. Natl Acad. Sci. USA 111, 11663–11667 (2014).

Schröder, A. et al. Onset of antiferromagnetism in heavy-fermion metals. Nature 407, 351–355 (2000).

Aronson, M. C. et al. Non-Fermi-liquid scaling of the magnetic response in UCu5−xPdx (x = 11.5). Phys. Rev. Lett. 75, 725–728 (1995).

Si, Q., Rabello, S., Ingersent, K. & Smith, J. L. Locally critical quantum phase transitions in strongly correlated metals. Nature 413, 804–808 (2001).

Coleman, P., Pépin, C., Si, Q. & Ramazashvili, R. How do Fermi liquids get heavy and die? J. Phys. Condens. Matter 13, R723–R738 (2001).

Shishido, H., Settai, R., Harima, H. & Onuki, Y. A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure. J. Phys. Soc. Jpn 74, 1103–1106 (2005).

Ishida, K. et al. Low-temperature magnetic order and spin dynamics in YbRh2Si2 . Phys. Rev. B 68, 184401 (2003).

Trovarelli, O. et al. YbRh2Si2: pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition. Phys. Rev. Lett. 85, 626–629 (2000).

Custers, J. et al. The break-up of heavy electrons at a quantum critical point. Nature 424, 524–527 (2003).

Gegenwart, P. et al. Multiple energy scales at a quantum critical point. Science 315, 969–971 (2007).

Paschen, S. et al. Hall-effect evolution across a heavy-fermion quantum critical point. Nature 432, 881–885 (2004).

Friedemann, S. et al. Fermi-surface collapse and dynamical scaling near a quantum-critical point. Proc. Natl Acad. Sci. USA 107, 14547–14551 (2010).

Senthil, T. Critical Fermi surfaces and non-Fermi liquid metals. Phys. Rev. B 78, 035103 (2008).

Pfau, H. et al. Thermal and electrical transport across a magnetic quantum critical point. Nature 484, 493–497 (2012).

Steglich, F. et al. Evidence of a Kondo destroying quantum critical point in YbRh2Si2 . J. Phys. Soc. Jpn 83, 061001 (2014).

Wiedemann, G. & Franz, R. Ueber die Wärmeleitfähigkeit der Metalle. Ann. Phys. 165, 497–531 (in German) (1853).

Lorenz, L. Bestimmung der Wärmegrade in absolutem Maasse. Ann. Phys. 223, 429–452 (in German) (1872).

Sommerfeld, A. & Bethe, H. (eds) Elektronentheorie der Metalle Vol. 24 (in German) (Springer-Verlag, 1933).

Dong, J. K., Tokiwa, Y., Bud'ko, S. L., Canfield, P. C. & Gegenwart, P. Anomalous reduction of the Lorenz ratio at the quantum critical point in YbAgGe. Phys. Rev. Lett. 110, 176402 (2013).

Machida, Y. et al. Verification of the Wiedemann–Franz law in YbRh2Si2 at a quantum critical point. Phys. Rev. Lett. 110, 236402 (2013).

Reid, J.-P. et al. Wiedemann–Franz law and non-vanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2 . Phys. Rev. B 89, 045130 (2014).

Pourret, A. et al. Quantum criticality and Lifshitz transition in the ising system CeRu2Si2: comparison with YbRh2Si2 . J. Phys. Soc. Jpn 83, 061002 (2014).

Taupin, M. et al. Thermal conductivity through the quantum critical point in YbRh2Si2 at very low temperature. Phys. Rev. Lett. 115, 046402 (2015).

Belitz, D., Kirkpatrick, T. R. & Vojta, T. First order transitions and multicritical points in weak itinerant ferromagnets. Phys. Rev. Lett. 82, 4707–4710 (1999).

Rech, J., Pepin, C. & Chubukov, A. V. Quantum critical behavior in itinerant electron systems: Eliashberg theory and instability of a ferromagnetic quantum critical point. Phys. Rev. B 74, 195126 (2006).

Brando, M., Belitz, D., Grosche, F. M. & Kirkpatrick, T. R. Metallic quantum ferromagnets. Rev. Mod. Phys. 88, 025006 (2016).

Steppke, A. et al. Ferromagnetic quantum critical point in the heavy-fermion metal YbNi4(P1−xAsx)2 . Science 339, 933–936 (2013).

Tokiwa, Y., Gegenwart, P., Geibel, C. & Steglich, F. Separation of energy scales in undoped YbRh2Si2 under hydrostatic pressure. J. Phys. Soc. Jpn 78, 123708 (2009).

Friedemann, S. et al. Detaching the antiferromagnetic quantum critical point from the Fermi-surface reconstruction in YbRh2Si2 . Nat. Phys. 5, 465–469 (2009).

Si, Q. Global magnetic phase diagram and local quantum criticality in heavy fermion metals. Physica B 378–380, 23–27 (2006).

Si, Q. Quantum criticality and global phase diagram of magnetic heavy fermions. Phys. Status Solidi B 247, 476–484 (2010).

Si, Q. & Paschen, S. Quantum phase transition in heavy fermion metals and Kondo insulators. Phys. Status Solidi B 250, 425–438 (2013).

Custers, J. et al. Evidence for a non-Fermi-liquid phase in Ge-substituted YbRh2Si2 . Phys. Rev. Lett. 104, 186402 (2010).

Gegenwart, P., Custers, J., Tokiwa, Y., Geibel, C. & Steglich, F. Ferromagnetic quantum critical fluctuations in YbRh2(Si0.95Ge0.05)2 . Phys. Rev. Lett. 94, 076402 (2005).

Anderson, P. W. Hidden Fermi liquid: the secret of high-T c cuprates. Phys. Rev. B 78, 174505 (2008).

Nevidomskyy, A. H. & Coleman, P. Layered Kondo lattice model for quantum critical β -YbAlB4 . Phys. Rev. Lett. 102, 077202 (2009).

Bud'ko, S. L., Zapf, V., Morosan, E. & Canfield, P. C. Field-dependent Hall effect in single-crystal heavy-fermion YbAgGe below 1 K. Phys. Rev. B 72, 172413 (2005).

Kim, M. S. & Aronson, M. C. Spin liquids and antiferromagnetic order in the Shastry–Sutherland-lattice compound Yb2Pt2Pb. Phys. Rev. Lett. 110, 017201 (2013).

Kim, M. S. et al. Low-temperature anomalies in magnetic, transport, and thermal properties of single-crystal CeRhSn with valence fluctuations. Phys. Rev. B 68, 054416 (2003).

Tokiwa, Y., Garst, M., Gegenwart, P., Bud'ko, S. L. & Canfield, P. C. Quantum bicriticality in the heavy-fermion metamagnet YbAgGe. Phys. Rev. Lett. 111, 116401 (2013).

Fritsch, V. et al. Approaching quantum criticality in a partially geometrically frustrated heavy-fermion metal. Phys. Rev. B 89, 054416 (2014).

Tokiwa, Y., Stingl, C., Kim, M.-S., Takabatake, T. & Gegenwart, P. Characteristic signatures of quantum criticality driven by geometrical frustration. Sci. Adv. 1, e1500001 (2015).

Vojta, M. From itinerant to local-moment antiferromagnetism in Kondo lattices: adiabatic continuity versus quantum phase transitions. Phys. Rev. B 78, 125109 (2008).

Tomita, T., Kuga, K., Uwatoko, Y., Coleman, P. & Nakatsuji, S. Strange metal without magnetic criticality. Science 349, 506–509 (2015).

Nakatsuji, S. et al. Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4 . Nat. Phys. 4, 603–607 (2008).

Okawa, M. et al. Strong valence fluctuation in the quantum critical heavy fermion superconductor β-YbAlB4: a hard x-ray photoemission study. Phys. Rev. Lett. 104, 247201 (2010).

Holanda, L. M. et al. Quantum critical Kondo quasiparticles probed by ESR in β -YbAlB4 . Phys. Rev. Lett. 107, 026402 (2011).

Matsumoto, Y. et al. Quantum criticality without tuning in the mixed valence compound β-YbAlB4 . Science 331, 316–319 (2011).

Sutherland, M. L. et al. Intact quasiparticles at an unconventional quantum critical point. Phys. Rev. B 92, 041114(R) (2015).

Tokiwa, Y., Ishikawa, J. J., Nakatsuji, S. & Gegenwart, P. Quantum criticality in a metallic spin liquid. Nat. Mater. 13, 356–359 (2014).

Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010).

Custers, J. et al. Destruction of the Kondo effect in the cubic heavy-fermion compound Ce3Pd20Si6 . Nat. Mater. 11, 189–194 (2012).

Stockert, O., Enderle, M. & Löhneysen, H. Magnetic fluctuations at a field-induced quantum phase transition. Phys. Rev. Lett. 99, 237203 (2007).

Jiao, L. et al. Fermi surface reconstruction and multiple quantum phase transitions in the antiferromagnet CeRhIn5 . Proc. Natl Acad. Sci. USA 112, 673–678 (2015).

Sebastian, S. E. et al. Heavy holes as a precursor to superconductivity in antiferromagnetic CeIn3 . Proc. Natl Acad. Sci. USA 106, 7741–7744 (2009).

Cornut, B. & Coqblin, B. Influence of the crystalline field on the Kondo effect of alloys and compounds with Ce impurities. Phys. Rev. B 5, 4541–4561 (1972).

Sun, P. & Steglich, F. Nernst effect: evidence of local Kondo scattering in heavy fermions. Phys. Rev. Lett. 110, 216408 (2013).

Coleman, P., Anderson, P. W. & Ramakrishnan, T. V. Theory for the anomalous Hall constant of mixed-valence systems. Phys. Rev. Lett. 55, 414–417 (1985).

Pikul, A. et al. Single-ion Kondo scaling of the coherent Fermi liquid regime in Ce1−xLaxNi2Ge2 . Phys. Rev. Lett. 108, 066405 (2012).

Schotte, K. D. & Schotte, U. Interpretation of Kondo experiments in a magnetic field. Phys. Lett. 55A, 38–40 (1975).

Ernst, S. et al. Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2 . Nature 474, 362–366 (2011).

Köhler, U., Oeschler, N., Steglich, F., Maquilon, S. & Fisk, Z. Energy scales of Lu1−xYbxRh2Si2 by means of thermopower investigations. Phys. Rev. B 77, 104412 (2008).

Újsághy, O., Kroha, J., Szunyogh, L. & Zawadowski, A. Theory of the Fano resonance in the STM tunneling density of states due to a single Kondo impurity. Phys. Rev. Lett. 85, 2557–2560 (2000).

Lang, K. M. et al. Imaging the granular structure of high-Tc superconductivity in underdoped Bi2Sr2CaCu2O8+δ . Nature 415, 412–416 (2002).

Petersen, L. et al. Direct imaging of the two-dimensional Fermi contour: Fourier-transform STM. Phys. Rev. B 57, R6858–6861 (1998).

Wahl, P. et al. Local spectroscopy of the Kondo lattice YbAl3: seeing beyond the surface with scanning tunneling microscopy and spectroscopy. Phys. Rev. B 84, 245131 (2011).

Stockert, O. et al. Crystalline electric field excitations of the non-Fermi-liquid YbRh2Si2 . Phys. B 378, 157–158 (2006).

Wirth, S. et al. Structural investigations on YbRh2Si2: from the atomic to the macroscopic length scale. J. Phys. Condens. Matter 24, 294203 (2012).

Kroha, J. et al. Structure and transport in multi-orbital Kondo systems. Phys. E 18, 69–72 (2003).

Costi, T. A. Kondo effect in a magnetic field and the magnetoresistivity of Kondo alloys. Phys. Rev. Lett. 85, 1504–1507 (2000).

Yang, Y., Fisk, Z., Lee, H.-O., Thompson, J. D. & Pines, D. Scaling the Kondo lattice. Nature 454, 611–613 (2008).

Curro, N. J., Young, B.-L., Schmalian, J. & Pines, D. Scaling in the emergent behavior of heavy-electron materials. Phys. Rev. B 70, 235117 (2004).

Nakatsuji, S., Pines, D. & Fisk, Z. Two fluid description of the Kondo lattice. Phys. Rev. Lett. 92, 016401 (2004).

Aeppli, G. & Fisk, Z. Kondo insulators. Comments Condens. Matter Phys. 16, 155–165 (1992).

Coleman, P. Introduction to Many Body Physics (Cambridge Univ. Press, 2015).

Varma, C. M. Aspects of strongly correlated insulators. Phys. Rev. B 50, 9952–9956 (1994).

Riseborough, P. S. Heavy fermion semiconductors. Adv. Phys. 49, 257–320 (2000).

Dzero, M., Sun, K., Galitski, V. & Coleman, P. Topological Kondo insulators. Phys. Rev. Lett. 104, 106408 (2010).

Takimoto, T. SmB6: a promising candidate for a topological insulator. J. Phys. Soc. Jpn 80, 123710 (2011).

Dzero, M., Xia, J., Galitski, V. & Coleman, P. Topological Kondo insulators. Annu. Rev. Condens. Matter Phys. 7, 249–280 (2016).

Strigari, F. et al. Crystal-field ground state of the orthorhombic Kondo insulator CeRu2Al10 . Phys. Rev. B 86, 081105 (2012).

Jaccarino, V., Wertheim, G. K., Wernick, J. H., Walker, L. R. & Arajs, S. Paramagnetic excited state of FeSi. Phys. Rev. 160, 476–482 (1967).

Bentien, A., Johnsen, S., Madsen, G. K. H., Iversen, B. B. & Steglich, F. Colossal Seebeck coefficient in strongly correlated semiconductor FeSb2 . Europhys. Lett. 80, 17008 (2007).

Vainshtein, E. E., Blokhin, S. M. & Paderno, Y. B. X-ray spectral investigation of samarium hexaboride. Sov. Phys. Solid State 6, 2318–2320 (1965).

Mizumaki, M., Tsutsui, S. & Iga, F. Temperature dependence of Sm valence in SmB6 studied by x-ray absorption spectroscopy. J. Phys. Conf. Ser. 176, 012034 (2009).

Allen, J. W., Batlogg, B. & Wachter, P. Large low-temperature Hall effect and resistivity in mixed-valent SmB6 . Phys. Rev. B 20, 4807–4813 (1979).

von Molnár, S. et al. in Valence Instabilities (eds Wachter, P. & Boppart, H. ) 389–395 (North-Holland, 1982).

Zhang, X. et al. Hybridization, inter-ion correlation, and surface states in the Kondo insulator SmB6 . Phys. Rev. X 3, 011011 (2013).

Neupane, M. et al. Surface electronic structure of the topological Kondo-insulator candidate correlated electron system SmB6 . Nat. Commun. 4, 2991 (2013).

Frantzeskakis, E. et al. Kondo hybridization and the origin of metallic states at the (001) surface of SmB6 . Phys. Rev. X 3, 041024 (2013).

Xu, N. et al. Direct observation of the spin texture in SmB6 as evidence of the topological Kondo insulator. Nat. Commun. 5, 4566 (2014).

Suga, S. et al. Spin-polarized angle-resolved photoelectron spectroscopy of the so-predicted Kondo topological insulator SmB6 . J. Phys. Soc. Jpn 83, 014705 (2014).

Gorshunov, B. et al. Low-energy electrodynamics of SmB6 . Phys. Rev. B 59, 1808–1814 (1999).

Flachbart, K. et al. Energy gap of intermediate-valent SmB6 studied by point-contact spectroscopy. Phys. Rev. B 64, 085104 (2001).

Miyazaki, H., Hajiri, T., Ito, T., Kunii, S. & Kimura, S. I. Momentum-dependent hybridization gap and dispersive in-gap state of the Kondo semiconductor SmB6 . Phys. Rev. B 86, 075105 (2012).

Menth, A., Buehler, E. & Geballe, T. H. Magnetic and semiconducting properties of SmB6 . Phys. Rev. Lett. 22, 295–297 (1969).

Caldwell, T. et al. High-field suppression of in-gap states in the Kondo insulator SmB6 . Phys. Rev. B 75, 075106 (2007).

Rößler, S. et al. Hybridization gap and fano resonance in SmB6 . Proc. Natl Acad. Sci. USA 111, 4798–4802 (2014).

Yee, M. M. et al. Imaging the Kondo insulating gap on SmB6. Preprint at https://arxiv.org/abs/1308.1085 (2013).

Ruan, W. et al. Emergence of a coherent in-gap state in the SmB6 Kondo insulator revealed by scanning tunneling spectroscopy. Phys. Rev. Lett. 112, 136401 (2014).

Alekseev, P. A. et al. Neutron scattering study of the intermediate-valent ground state in SmB6 . Europhys. Lett. 23, 347–353 (1993).

Maltseva, M., Dzero, M. & Coleman, P. Electron cotunneling into a Kondo lattice. Phys. Rev. Lett. 103, 206402 (2009).

Figgins, J. & Morr, D. K. Differential conductance and quantum interference in Kondo systems. Phys. Rev. Lett. 104, 187202 (2010).

Schiller, A. & Hershfield, S. Theory of scanning tunneling spectroscopy of a magnetic adatom on a metallic surface. Phys. Rev. B 61, 9036–9046 (2000).

Zhu, Z.-H. et al. Polarity-driven surface metallicity in SmB6 . Phys. Rev. Lett. 111, 216402 (2013).

Costi, T. A., Hewson, A. C. & Zlatic´, V. Transport coefficients of the Anderson model via the numerical renormalization group. J. Phys. Condens. Matter 6, 2519–2558 (1994).

Zou, Y. et al. Fermi liquid breakdown and evidence for superconductivity in YFe2Ge2 . Phys. Status Solidi R. 8, 928–930 (2014).

Wu, W. et al. Superconductivity in the vicinity of antiferromagnetic order in CrAs. Nat. Commun. 5, 5508 (2014).

Bao, J. K. et al. Superconductivity in quasi-one-dimensional K2Cr3As3 with significant electron correlations. Phys. Rev. X 5, 011013 (2015).

Kunthia, P. et al. Contiguous 3d and 4f magnetism: strongly correlated 3d electrons in YbFe2Al10 . Phys. Rev. Lett. 113, 216403 (2014).

Goldhaber-Gordon, D. et al. Kondo effect in a single-electron transistor. Nature 391, 156–159 (1998).

Liang, W., Shores, M. P., Bockrath, M., Long, J. R. & Park, H. Kondo resonance in a single-molecule transistor. Nature 419, 725–729 (2002).

Si, Q., Yu, R. & Abrahams, E. High-temperature superconductivity in iron pnictides and chalcogenides. Nat. Rev. Mater. 1, 16017 (2016).

Kanoda, K. in The Physics of Organic Superconductors and Conductors (ed. Lebed, A. ) 623–642 (Springer-Verlag, 2008).