Exploring gene causal interactions using an enhanced constraint-based method

Pattern Recognition - Tập 39 - Trang 2439-2449 - 2006
Xintao Wu1, Yong Ye1
1Department of Computer Science, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28223, USA

Tài liệu tham khảo

Schena, 1995, Quantitative monitoring of gene expression patterns with a complementary dna microarray, Science, 270, 467, 10.1126/science.270.5235.467 Spirtes, 2000 Heckerman, 1997, Bayesian networks for data mining, Data Mining Knowledge Discovery, 1, 79, 10.1023/A:1009730122752 Lauritzen, 1996 Andersen, 1994 Agrawal, 1993, Mining association rules between sets of items in large databases, 207 Z. Szallasi, Genetic network analysis in light of massively parallel biological data acquisitions, in: Proceedings of Pacific Symposium on Biocomputing, 1999, pp. 234–243. N. Friedman, M. Linial, I. Nachman, D. Peer, Using bayesian networks to analyze expression data, in: Proceedings of the Fourth Annual International Conference on Computational Molecular Biology, 2000. K. Murphy, S. Mian, Modeling gene expression data using dynamic bayesian networks, Technical Report, CS Department, University of California at Berkeley, 1999. Segal, 2003, Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data, Nat. Gene., 34, 166, 10.1038/ng1165 Spirtes, 1991, From probability to causality, Philos. Stud., 64, 1, 10.1007/BF00356088 Ben-Dor, 1999, Clustering gene expression patterns, J. Comput. Biol., 6, 281, 10.1089/106652799318274 Hartuv, 2000, A clustering algorithm based on graph connectivity, Inf. Process. Lett., 76, 175, 10.1016/S0020-0190(00)00142-3 R. Shamir, R. Shamir, Click: a clustering algorithm for gene expression analysis, in: Proceedings of the Eighth International Conference on Intelligent System for Molecular Biology (ISMB00), 2000. Xu, 2002, Clustering gene expression data using a graph–theoretic approach: an application of minimum spanning trees, Bioinformatics, 18, 536, 10.1093/bioinformatics/18.4.536 Creighton, 2003, Mining gene expression databases for association rules, Bioinformatics, 19-1, 79, 10.1093/bioinformatics/19.1.79 Agrawal, 1994, Fast algorithms for mining association rules, 487 Wu, 2003, Screening and interpreting multi-item associations based on log-linear modeling, 276 Wu, 2003, Graphical modeling based gene interaction analysis for microarray data, KDD Explor., 5, 91, 10.1145/980972.980984 Jong, 2002, Modeling and simulation of genetic regulatory systems: a literature review, J. Comput. Biol., 9, 67, 10.1089/10665270252833208 Kishino, 2000, Correspondence analysis of genes and tissue types and finding genetic links from microarray data, Genome Inf., 11, 83 Waddell, 2000, Cluster inference methods and graphical models evaluated on nci60 microarray gene expression data, Genome Inf., 11, 129 Whittaker, 1990 Niehrs, 1999, Synexpression groups in eukaryotes, Nature, 402, 483, 10.1038/990025 Tucker, 2001, Towards an understanding of complex protein networks, Trends Cell Biol., 11, 102, 10.1016/S0962-8924(00)01902-4 Tarjan, 1985, Decomposition by clique separators, Discrete Math., 55, 221, 10.1016/0012-365X(85)90051-2 Hughes, 2000, Functional discovery via a compendium of expression profiles, Cell, 102, 109, 10.1016/S0092-8674(00)00015-5 Bhardwaj, 2005, Correlation between the gene expression profiles and the protein–protein interactions within and across different genomes, Bioinformatics, 21, 2730, 10.1093/bioinformatics/bti398 J. Ellson, S. North, Graph visualization project (graphviz) 〈http://www.graphviz.org〉. B. Spitzak, et al., The fast light toolkit(fltk) 〈http://www.fltk.org〉. C. Borgelt, Association rule induction 〈http://fuzzy.cs.uni-magdeburg.de/∼borgelt/software.html〉. M. Eisen, Cluster analysis and visualization 〈http://rana.lbl.gov〉. Gavin, 2002, Functional organization of the yeast proteome by systematic analysis of protein complexes, Nature, 415, 141, 10.1038/415141a Butland, 2005, Interaction network containing conserved and essential protein complexes in Escherichia Coli, Nature, 433, 531, 10.1038/nature03239 I. Tsamardinos, C.A. Aliferis, A. Statnikov, L.E. Brown, Scaling-up bayesian network learning to thousands of variables using local learning techniques, Technical Report, DSL TR-03-02, Vanderbilt University, March 2003. Kinney, 1989, Arginine restriction induced by delta-n-(phosphonacetyl)-l-ornithine signals increased expression of his3, trp5, cpa1, and cpa2 in saccharomyces cerevisiae, Mol. Cell Biol., 9, 4882, 10.1128/MCB.9.11.4882 Beinlich, 1989, The ALARM monitoring system: a case study with two probabilistic inference techniques for belief networks, vol. 38, 247 N. Friedman, G. Elidan, Libb, a tool for learning bayesian network 〈http://www.cs.huji.ac.il/labs/compbio/LibB〉. Ye, 2005, Efficient causal interaction learning with applications in microarray, 622