Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bishop, 2006, Pattern Recognition and Machine Learning.
Boryan, 2013, Deriving crop specific covariate data sets from multi-year NASS geospatial cropland data layers, 2013 IEEE International Geoscience Remote Sensing Symposium-IGARSS, 4225, 10.1109/IGARSS.2013.6723766
Congalton, 1991, A review of assessing the accuracy of classifications of remotely sensed data, Remote Sens. Environ., 37, 35, 10.1016/0034-4257(91)90048-B
Congalton, 2008, Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 10.1201/9781420055139
Fritz, 2013, The need for improved maps of global cropland, Eos Trans. Am. Geophys. Union, 94, 31, 10.1002/2013EO030006
Gallego, 2014, Efficiency assessment of using satellite data for crop area estimation in Ukraine, Int. J. Appl. Earth Observ. Geoinform., 29, 22, 10.1016/j.jag.2013.12.013
Gallego, 2010, Accuracy, objectivity and efficiency of remote sensing for agricultural statistics, Agricultural Survey Methods, 10.1002/9780470665480.ch12
Gallego, 2012, Efficiency assessment of different approaches to crop classification based on satellite and ground observations, J. Autom. Inf. Sci., 44, 67, 10.1615/JAutomatInfScien.v44.i5.70
Gao, 2006, On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance, IEEE Trans. Geosci. Remote Sens., 44, 2207, 10.1109/TGRS.2006.872081
Haykin, 2008, Neural Networks and Learning Machines, 3rd Edn
Hilker, 2009, Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model, Remote Sens. Environ., 113, 1988, 10.1016/j.rse.2009.05.011
Kogan, 2013a, Winter wheat yield forecasting in Ukraine based on Earth observation, meteorological data and biophysical models, Int. J. Appl. Earth Observ. Geoinform., 23, 192, 10.1016/j.jag.2013.01.002
Kogan, 2013b, Winter wheat yield forecasting: A comparative analysis of results of regression and biophysical models, J. Autom. Inf. Sci., 45, 68, 10.1615/JAutomatInfScien.v45.i6.70
Kolotii, 2015, Comparison of biophysical and satellite predictors for wheat yield forecasting in Ukraine, Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., 40, 39, 10.5194/isprsarchives-XL-7-W3-39-2015
Kussul, 2016, Parcel-based crop classification in ukraine using landsat-8 data and sentinel-1A data, IEEE J. Select. Top. Appl. Earth Observ. Rem. Sens., 9, 2500, 10.1109/JSTARS.2016.2560141
Kussul, 2010, Disaster risk assessment based on heterogeneous geospatial information, J. Autom. Inf. Sci., 42, 32, 10.1615/JAutomatInfScien.v42.i12.40
Kussul, 2015, Geospatial Intelligence and Data Fusion Techniques for Sustainable Development Problems, ICTERI, 196
Kussul, 2011, Grid technologies for satellite data processing and management within international disaster monitoring projects, Grid and Cloud Database Management, 279, 10.1007/978-3-642-20045-8_14
Lavreniuk, 2016, Large-scale classification of land cover using retrospective satellite data, Cybern. Syst. Anal., 52, 127, 10.1007/s10559-016-9807-4
Littlestone, 1988, Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm, Mach. Learn., 2, 285, 10.1007/BF00116827
Ma, 2015a, Towards building a data-intensive index for big data computing–a case study of Remote Sensing data processing, Inf. Sci., 319, 171, 10.1016/j.ins.2014.10.006
Ma, 2015b, Remote sensing big data computing: challenges and opportunities, Future Generation Comput. Syst., 51, 47, 10.1016/j.future.2014.10.029
Maji, 2008, Classification using intersection kernel support vector machines is efficient, IEEE Conference on Computer Vision and Pattern Recognition, 1
McNairn, 2009, Integration of optical and Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories, ISPRS J. Photogramm. Remote Sens., 64, 434, 10.1016/j.isprsjprs.2008.07.006
Rahman, 1994, SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum, Remote Sens., 15, 123, 10.1080/01431169408954055
Roy, 2008, Multi-temporal MODIS–Landsat data fusion for relative radiometric normalization, gap filling, and prediction of Landsat data, Remote Sens. Environ., 112, 3112, 10.1016/j.rse.2008.03.009
Roy, 2014, Landsat-8: science and product vision for terrestrial global change research, Remote Sens. Environ., 145, 154, 10.1016/j.rse.2014.02.001
Shalev-Shwartz, 2011, Pegasos: primal estimated sub-gradient solver for svm, Math. Programming, 127, 3, 10.1007/s10107-010-0420-4
Skakun, 2016b, The use of satellite data for agriculture drought risk quantification in Ukraine, Geomatics Nat. Hazards Risk, 7, 901, 10.1080/19475705.2015.1016555
Skakun, 2016a, Efficiency assessment of multitemporal C-Band Radarsat-2 intensity and Landsat-8 surface reflectance satellite imagery for crop classification in Ukraine, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 9, 3712, 10.1109/JSTARS.2015.2454297
Skakun, 2014, Reconstruction of missing data in time-series of optical satellite images using self-organizing Kohonen maps, J. Autom. Inf. Sci., 46, 19, 10.1615/JAutomatInfScien.v46.i12.30
Skakun, 2007, Analysis of applicability of neural networks for classification of satellite data, J. Autom. Inf. Sci., 39, 37, 10.1615/JAutomatInfScien.v39.i3.40
Waldner, 2016, Towards a set of agrosystem-specific cropland mapping methods to address the global cropland diversity, Int. J. Remote Sens., 37, 3196, 10.1080/01431161.2016.1194545
Yan, 2014, Automated crop field extraction from multi-temporal Web Enabled Landsat Data, Remote Sens. Environ., 144, 42, 10.1016/j.rse.2014.01.006