Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Khám Phá Các Điều Kiện Giới Hạn Tác Động của Khả Năng Truy Cập Mạng Di Động Đến Nhận Thức của Nhân Viên Về Hiện Diện: Từ Cả Góc Độ Cá Nhân và Xã Hội
Tóm tắt
Các mạng di động, chẳng hạn như Wi-Fi và các mạng do nhà cung cấp di động cung cấp, hiện diện khắp mọi nơi và hỗ trợ nhân viên trong việc xử lý những vấn đề liên quan đến công việc. Với khả năng tiếp cận mạng di động, nhân viên cảm thấy rằng họ luôn có thể liên lạc với người khác, điều này được định nghĩa là “hiện diện”. Với tầm quan trọng của hiện diện trong tâm trí, nghiên cứu này nhằm mục đích khám phá các điều kiện nào làm tăng hoặc giảm nhận thức của nhân viên về hiện diện dựa trên khả năng tiếp cận mạng di động. Dựa trên lý thuyết tự xác định và ảnh hưởng xã hội chuẩn tắc, cả điều kiện giới hạn ở cấp độ cá nhân (tức là, nhu cầu tự chủ và nhu cầu liên kết) và cấp độ xã hội (tức là, chuẩn mực phản hồi) đều được chỉ ra. Dữ liệu được thu thập từ 223 nhân viên sử dụng công nghệ di động tại nơi làm việc. Các kết quả thực nghiệm của chúng tôi cho thấy rằng nhu cầu liên kết có tác động điều chỉnh tích cực mối quan hệ giữa khả năng tiếp cận mạng di động và nhận thức của nhân viên về hiện diện. Chúng tôi cũng phát hiện rằng chuẩn mực phản hồi có tác động điều chỉnh tiêu cực mối quan hệ giữa khả năng tiếp cận mạng di động và nhận thức của nhân viên về hiện diện. Nghiên cứu này đóng góp vào tài liệu về hiện diện và đồng thời cung cấp hướng dẫn cho các chuyên gia.
Từ khóa
#hiện diện #mạng di động #nhận thức #cá nhân #xã hộiTài liệu tham khảo
Ahuja, M. K., Chudoba, K. M., Kacmar, C. J., McKnight, D. H., & George, J. F. (2007). IT road warriors: Balancing work-family conflict, job autonomy, and work overload to mitigate turnover intentions. MIS Quarterly, 31(1), 1–17.
Ayyagari, R., Grover, V., & Purvis, R. (2011). Technostress: Technological antecedents and implications. MIS Quarterly, 35(4), 831–858.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science, 16(1), 74–94.
Bandura, A. (1977). Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review, 84(2), 191–215.
Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory: Prentice-hall, Inc.
Barley, S. R., Meyerson, D. E., & Grodal, S. (2011). E-mail as a source and symbol of stress. Organization Science, 22(4), 887–906.
Bittman, M., Brown, J. E., & Wajcman, J. (2009). The mobile phone, perpetual contact and time pressure. Work, Employment and Society, 23(4), 673–691.
Byrne, B. M. (2013). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Routledge.
Carpenter, D., McLeod, A., Hicks, C., & Maasberg, M. (2018). Privacy and biometrics: An empirical examination of employee concerns. Information Systems Frontiers, 20(1), 91–110.
Chin, W. W., Marcolin, B. L., & Newsted, P. R. (2003). A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study. Information Systems Research, 14(2), 189–217.
Chou, C.-H., Wang, Y.-S., & Tang, T.-I. (2015). Exploring the determinants of knowledge adoption in virtual communities: A social influence perspective. International Journal of Information Management, 35(3), 364–376.
Day, A., Scott, N., & Kelloway, E. K. (2010). Information and communication technology: Implications for job stress and employee well-being. Research in Occupational Stress and Well Being, 8, 317–350.
Deci, E. L., & Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. Springer.
Deci, E. L., & Ryan, R. M. (2004). Handbook of self-determination research. Univ of Rochester Pr.
Deci, E. L., Ryan, R. M., Gagne, M., Leone, D. R., Usunov, J., & Kornazheva, B. P. (2001). Need satisfaction, motivation, and well-being in the work organizations of a former eastern bloc country: A cross-cultural study of self-determination. Personality and Social Psychology Bulletin, 27(8), 930–942.
Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social influences upon individual judgment. The Journal of Abnormal and Social Psychology, 51(3), 629–636.
Donmeza, B., Matsonb, Z., Savanb, B., Farahanib, E., Photiadisb, D., & Dafoeb, J. (2014). Interruption management and office norms: Technology adoption lessons from a product commercialization study. International Journal of Information Management, 34(6), 741–750.
Edwards, J. R. (1996). An examination of competing versions of the person-environment fit approach to stress. Academy of Management Journal, 39(2), 292–339.
Erskine, M. A., Gregg, D. G., Karimi, J., & Scott, J. E. (2018). Individual decision-performance using spatial decision support systems: A geospatial reasoning ability and perceived task-technology fit perspective. Information Systems Frontiers. https://doi.org/10.1007/s10796-018-9840-0.
Folkman, S., Lazarus, R. S., Dunkel-Schetter, C., DeLongis, A., & Gruen, R. J. (1986). Dynamics of a stressful encounter: Cognitive appraisal, coping, and encounter outcomes. Journal of Personality and Social Psychology, 50(5), 992–1003.
Gebauer, J., & Shaw, M. J. (2004). Success factors and impacts of Mobile business applications: Results from a Mobile e-procurement study. International Journal of Electronic Commerce, 8(3), 19–41.
Gebauer, J., Shaw, M. J., & Gribbins, M. L. (2010). Task-technology fit for mobile information systems. Journal of Information Technology, 25, 259–272.
Gefen, D., Straub, D. W., & Rigdon, E. E. (2011). An update and extension to SEM guidelines for administrative and social science research. MIS Quarterly, 35(2), iii–xiv.
Giesbers, B., Rienties, B., Tempelaar, D., & Gijselaers, W. (2013). Investigating the relations between motivation, tool use, participation, and performance in an e-learning course using web-videoconferencing. Computers in Human Behavior, 29(1), 285–292.
Goodhue, D. L., & Thompson, R. L. (1995). Task-technology fit and individual performance. MIS Quarterly, 19(2), 213–236.
Goodhue, D., Lewis, W., & Thompson, R. (2007). Statistical power in analyzing interaction effects: Questioning the advantage of PLS with product indicators. Information Systems Research, 18(2), 211–227.
Hong, S.-J., & Tam, K. Y. (2006). Understanding the adoption of multipurpose information appliances: The case of Mobile data services. Information Systems Research, 17(2), 162–179.
Hsu, C.-L., & Lin, J. C.-C. (2008). Acceptance of blog usage: The roles of technology acceptance, social influence and knowledge sharing motivation. Information & Management, 45(1), 65–74.
Hsu, C.-L., & Lu, H.-P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & Management, 41(7), 853–868.
Hu, L. t., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55.
Hung, W. H., Chang, L. M., & Lin, C. H. (2011). Managing the risk of overusing Mobile phones in the working environment: A study of ubiquitous technostress. Paper presented at the Pacific Asia Conference on Information Systems.
Isaac, H., & Leclercq, A. (2006). Assessing the value of Mobile technologies in organizations: An exploratory research. Paper presented at the International Conference on Mobile Business.
Jarvenpaa, S. L., & Lang, K. R. (2005). Managing the paradoxes of Mobile technology. Information Systems Management, 22(4), 7–23.
Junglas, I., & Watson, R. (2003). U-commerce: An experimental investigation of ubiquity and uniqueness. Paper presented at the International Conference on Information Systems.
Karr-Wisniewski, P., & Lu, Y. (2010). When more is too much: Operationalizing technology overload and exploring its impact on knowledge worker productivity. Computers in Human Behavior, 26(5), 1061–1072.
Ke, W., & Zhang, P. (2010). The effects of extrinsic motivations and satisfaction in open source software development. Journal of the Association for Information Systems, 11(12), 5.
Kelman, H. C. (1958). Compliance, identification, and internalization: Three processes of attitude change. The Journal of Conflict Resolution, 2(1), 51–60.
Kim, S., & Garrison, G. (2009). Investigating mobile wireless technology adoption: An extension of the technology acceptance model. Information Systems Frontiers, 11(3), 323–333.
Kim, D., Cavusgil, S. T., & Calantone, R. J. (2006). Information system innovations and supply chain management: Channel relationships and firm performance. Journal of the Academy of Marketing Science, 34(1), 40–54.
Lee, D. J., Sirgy, M. J., Brown, J. R., & Bird, M. M. (2004). Importers’ benevolence toward their foreign export suppliers. Journal of the Academy of Marketing Science, 32(1), 32–48.
Lien, C.-H., Cao, Y., & Zhou, X. (2017). Service quality, satisfaction, stickiness, and usage intentions: An exploratory evaluation in the context of WeChat services. Computers in Human Behavior, 68, 403–410.
Mazmanian, M., Yates, J., & Orlikowski, W. (2006). Ubiquitous email: Individual experiences and organizational consequences of BlackBerry use. Paper presented at the Academy of Management Best Conference.
Middleton, C. A., & Cukier, W. (2006). Is Mobile email functional or dysfunctional? Two perspectives on Mobile email usage. European Journal of Information Systems, 15(3), 252–260.
Moore, G. C., & Benbasat, I. (1991). Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192–222.
Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. Journal of Applied Psychology, 88(5), 879–903.
Ragu-Nathan, T. S., Tarafdar, M., Ragu-Nathan, B. S., & Tu, Q. (2008). The consequences of technostress for end users in organizations: Conceptual development and empirical validation. Information Systems Research, 19(4), 417–433.
Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior, 24(4), 1585–1604.
Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. American Psychologist, 55(1), 68–78.
Sharma, S. K. (2017). Integrating cognitive antecedents into TAM to explain mobile banking behavioral intention: A SEM-neural network modeling. Information Systems Frontiers. https://doi.org/10.1007/s10796-017-9775-x.
Sheldon, K. M., & Bettencourt, B. (2002). Psychological need satisfaction and subjective well being within social groups. British Journal of Social Psychology, 41(1), 25–38.
Shen, A. X., Cheung, C. M., Lee, M. K., & Chen, H. (2011). How social influence affects we-intention to use instant messaging: The moderating effect of usage experience. Information Systems Frontiers, 13(2), 157–169.
Shih, H. P., & Huang, E. (2014). Influences of web interactivity and social identity and bonds on the quality of online discussion in a virtual community. Information Systems Frontiers, 16(4), 627–641.
Tarafdar, M., Tu, Q., Ragu-Nathan, B. S., & Ragu-Nathan, T. S. (2007). The impact of technostress on role stress and productivity. Journal of Management Information Systems, 24(1), 301–328.
Tarafdar, M., Tu, Q., & Ragu-Nathan, T. (2010). Impact of technostress on end-user satisfaction and performance. Journal of Management Information Systems, 27(3), 303–334.
Tsai, H.-T., & Bagozzi, R. P. (2014). Contribution behavior in virtual communities: Cognitive, emotional and social influences. MIS Quarterly, 38(1), 143–163.
Tsai, H.-T., & Pai, P. (2014). Why do newcomers participate in virtual communities? An integration of self-determination and relationship management theories. Decision Support Systems, 57, 178–187.
Van den Broeck, A., Vansteenkiste, M., De Witte, H., & Lens, W. (2008). Explaining the relationships between job characteristics, burnout, and engagement: The role of basic psychological need satisfaction. Work and Stress, 22(3), 277–294.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204.
Wang, Y., Meister, D. B., & Gray, P. H. (2013). Social influence and knowledge management systems use: Evidence from panel data. MIS Quarterly, 37(1), 299–313.
Williams, L. J., Cote, J. A., & Buckley, M. R. (1989). Lack of method variance in self-reported affect and perceptions at work: Reality or artifact? Journal of Applied Psychology, 74(3), 462–468.
Zhang, M., Guo, L., Huc, M., & Liud, W. (2016). Influence of customer engagement with company social networks on stickiness: Mediating effect of customer value creation. International Journal of Information Management, 37(3), 229–240.
Zhou, T., & Li, H. (2014). Understanding mobile SNS continuance usage in China from the perspectives of social influence and privacy concern. Computers in Human Behavior, 37, 283–289.