Exploratory spatio-temporal data mining and visualization

Journal of Visual Languages & Computing - Tập 18 - Trang 255-279 - 2007
P. Compieta1,2, S. Di Martino3, M. Bertolotto1, F. Ferrucci3, T. Kechadi1
1University College Dublin, Dublin, Ireland
2Università degli Studi di Bologna, Bologna, Italy
3Università degli Studi di Salerno – DMI, Fisciano (SA), Italy

Tài liệu tham khảo

R. Agrawal, T. Imielinski, A. Swami, Mining association rules between sets of items in large databases, in: ACM SIGMOD Conference, 1993. U.M. Fayyad, G.G. Grinstein, Introduction, in: Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, Los Altos, CA, 2001, pp. 1–17. Y. Bédard, T. Merrett, J. Han, Fundaments of spatial data warehousing for geographic knowledge discovery, Geographic Data Mining and Knowledge Discovery, Taylor & Francis, London, 2001, pp. 53–73. M.F. Costabile, D. Malerba (Eds.), Special issue on visual data mining, Journal of Visual Languages and Computing 14 (2003) 499–501. W.L. Johnston, Model visualization, in: Information Visualization in Data Mining and Knowledge Discovery, Morgan Kaufmann, Los Altos, CA, 2001, pp. 223–227. Kopanakis, 2003, Visual data mining modeling techniques for the visualization of mining outcomes, Journal of Visual Languages and Computing, 14, 543, 10.1016/j.jvlc.2003.06.002 Andrienko, 2003, Exploratory spatio-temporal visualization: an analytical review, Journal of Visual Languages and Computing, special issue on Visual Data Mining, 14, 503, 10.1016/S1045-926X(03)00046-6 Y. Bédard, Spatial OLAP, 2ème Forum Annuel sur la R-D, Géomatique VI: Un Monde Accessible, Montréal, CA, 13–14 Novembre 1997. Shneiderman, 2002, Inventing discovery tools: combining information visualization with data mining, Information Visualization, 1, 5, 10.1057/palgrave.ivs.9500006 Google Earth, available at 〈http://earth.google.com/〉. Java3D web site, 〈http://java.sun.com/products/java-media/3D/〉. National Hurricane Center, Tropical cyclone report: hurricane Isabel, 〈http://www.tpc.ncep.noaa.gov/2003isabel.shtml〉, 2003. A. Hinneburg, D.A. Keim, An efficient approach to clustering in large multimedia databases with noise, in: KDD, 1998. Roddick, 2001, Paradigms for spatial and spatio-temporal data mining Shekhar, 2001, What's spatial about spatial data mining: three case studies M. Spenke, C. Beilken, Visual, interactive data mining with infozoom—the financial data set, in: Third European Conference on Principles and Practice of Knowledge Discovery in Databases, PKDD’99, Prague, Czech Republic, 15–18 September, 1999. Keim, 2004, Visual data mining in large geospatial point sets, IEEE Computer Graphics and Applications, 24, 36, 10.1109/MCG.2004.41 Y. Yang, G.I. Webb, A comparative study of discretization methods for Naïve–Bayes classifiers, in: Proceedings of the 2002 Pacific Rim Knowledge Acquisition Work-shop, Japan, pp. 159–173. K. Koperski, J. Adhikary, J. Han, Spatial data mining: progress and challenges, in: Proceedings of the ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Montreal, Canada, 1996, pp. 55–70. R. Agrawal, R. Srikant, Fast algorithms for mining association rules, in: Proceedings of the International Conference on VLDB, Santiago, Chile, September, 1994. J.-Y. Pan, C. Faloutsos, GeoPlot: spatial data mining on video libraries, in: Proceedings of the 11th International Conference on Information and Knowledge Management (CIKM’02), VA, USA, 4–9 November, 2002. B. Zhang, M. Hsu, U. Dayal, K-harmonic means—a spatial clustering algorithm with boosting, in: TSDM, 2000. Dhillon, 2001, Concept decompositions for large sparse text data using clustering, Machine Learning, 42, 10.1023/A:1007612920971 T. Zhang, R. Ramakrishnan, M. Livny, BIRCH: an efficient data clustering method for very large databases, in: SIGMOD, 1996. Peuquet, 1994, It's about time: a conceptual framework for the representation of temporal dynamics in geographic information systems, Annals of the Association of American Geographers, 84, 441, 10.1111/j.1467-8306.1994.tb01869.x G. Hamerly, C. Elkan, Learning the k in k-means, in: NIPS, 2003. Karypis, 1999, Chameleon: hierarchical clustering using dynamic modeling, IEEE Computer, 32, 10.1109/2.781637 W. Lu, J. Han, B.C. Ooi, Discovery of general knowledge in large spatial databases, in: Proceedings of the Fareast Workshop on Geographic Information Systems, 1993. Mitchell, 1997 H. Toivonen, Sampling large databases for association rules, in: Proceedings of the International Very Large Database Conference, 1996, pp. 134–145. J. Mennis, J.W. Liu, Mining association rules in spatio-temporal data, in: Proceedings of the Seventh International Conference on GeoComputation, 2003. Z. Zhang, Y. Lu, B. Zhang, An effective partitioning–combining algorithm for discovering quantitative association rules, in: Proceedings of the First Pacific Asia Conference on Knowledge Discovery and Data Mining, 1997, pp. 241–251. Andrienko, 2006 P. Buono, M.F. Costabile, F.A. Lisi, Supporting data analysis through visualizations, in: Proceedings of the Workshop on Visual Data Mining, Freiburg, Germany, 4 September 2001, pp. 67–78. Dunham, 2003 K. Wang, S.H.W. Tay, B. Liu, Interestingness-based interval merger for numeric association rules, in: Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining, 1998, pp. 121–127. S. Orlando, P. Palmerini, R. Perego, Enhancing the apriori algorithm for frequent set counting, in: Proceedings of the Third International Conference on Data Warehousing and Knowledge Discovery (DaWaK 01)—Munich, Germany, Lecture Notes in Computer Science, vol. 2114, Springer, Berlin, 2001, pp. 71–82. KML Specifications, available at 〈http://earth.google.com/kml/kml_intro.html〉. OpenGL libraries, available at 〈http://www.opengl.org〉. Java3D community, 〈http://www.j3d.org〉. IEEE Computer Society, IEEE visualization 2004 contest, 〈http://vis.computer.org/vis2004contest/〉, 2004. Rivest, 2001, Toward better support for spatial decision making: defining the characteristics of spatial on-line analytical processing (SOLAP), Geomatica, 55, 539