Exploration of distributional models for a novel intensity-dependent normalization procedure in censored gene expression data

Computational Statistics and Data Analysis - Tập 53 - Trang 1906-1922 - 2009
Nicola Lama1,2, Patrizia Boracchi2, Elia Biganzoli2,3
1Dipartimento di Medicina Pubblica, Clinica e Preventiva, Seconda Università di Napoli, Via Luciano Armanni 5, 80138 Napoli, Italy
2Istituto di Statistica Medica e Biometria, Università degli Studi di Milano, Via Vanzetti 5, Cascina Rosa, 20133 Milano, Italy
3Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133 Milano, Italy

Tài liệu tham khảo

Akaike, 1973, Information theory and an extension of the maximum likelihood principle, 267 Bioconductor, 2006. R package version 1.11.3, affydata: Affymetrix data for demonstration purpose Bland, 1986, Statistical method for assessing agreement between two methods of clinical measurement, The Lancet, 307, 10.1016/S0140-6736(86)90837-8 Bland, 1999, Measuring agreement in method comparison studies, Statistical Methods in Medical Research, 8, 135, 10.1191/096228099673819272 Bolstad, 2003, A comparison of normalization methods for high density oligonucleotide array data based on variance and bias, Bioinformatics, 19, 185, 10.1093/bioinformatics/19.2.185 Chen, 1997, Ratio-based decisions and the quantitative analysis of CDNA microarray images, Journal of Biomedical Optics, 2, 364, 10.1117/12.281504 Cleveland, 1988, Locally weighted regression: An approach to regression analysis by local fitting, Journal of the American Statistical Association, 83, 596, 10.2307/2289282 Cui, 2003, Transformations for CDNA microarray data, Statistical Applications in Genetics and Molecular Biology, 2, 10.2202/1544-6115.1009 Dabney, 2005, A new approach to intensity-dependent normalization of two-channel microarrays D’Agostino, 1986 deBoor, 1978 Dudoit, 2002, Statistical methods for identifying differentially expressed genes in replicated CDNA microarray experiments, Statistica Sinica, 12, 111 Dudoit, 2003, Bioconductor R packages for exploratory analysis and normalization of CDNA microarray data, 73 Dunn, 1996, Randomized quantile residuals, Journal of Computational and Graphical Statistics, 236, 10.2307/1390802 Durbin, 2003, Estimation of transformation parameters for microarray data, Bioinformatics, 19, 1360, 10.1093/bioinformatics/btg178 Durbin, 2004, Variance-stabilizing transformations for two-color microarrays, Bioinformatics, 20, 660, 10.1093/bioinformatics/btg464 Ein-Dor, 2005, Outcome signature genes in breast cancer: is there a unique set?, Bioinformatics, 21, 171, 10.1093/bioinformatics/bth469 Futschik, 2004, Model selection and efficiency testing for normalisation of CDNA microarray data, Genome Biology, 5, R60, 10.1186/gb-2004-5-8-r60 Futschik, 2005, Olin: Optimized normalization, visualization and quality testing of two-channel microarray data, Bioinformatics Application Note, 21, 1724, 10.1093/bioinformatics/bti199 Hastie, 1992 Huber, 2002, Transcription profiling of renal cell carcinoma, Verhandlungen der Deutschen Gesellschaft für Pathologie, 86, 153 Huber, 2002, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics, 18 Suppl. 1, S96, 10.1093/bioinformatics/18.suppl_1.S96 Huber, 2002, Variance stabilization applied to microarray data calibration and to the quantification of differential expression, Bioinformatics, 18 Suppl 1, S96, 10.1093/bioinformatics/18.suppl_1.S96 Huber, 2003, Parameter estimation for the calibration and variance stabilization of microarray data, Statistical Applications in Genetics and Molecular Biology, 2, 1, 10.2202/1544-6115.1008 Huber, W., von Heydebreck, A., Vingron, M., 2004. Error Models for Microarray Intensities, Tech. Rep. 6, Bioconductor Project Working Papers. URL citeseer.ist.psu.edu/article/newton99differential.html Ideker, 2000, Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data, Journal of Computational Biology, 7, 805, 10.1089/10665270050514945 Ioannidis, 2005, Microarrays and molecular research: Noise discovery?, Lancet, 365, 454, 10.1016/S0140-6736(05)17878-7 Kerr, 2001, Experimental design for gene expression microarrays, Biostatistics, 2, 183, 10.1093/biostatistics/2.2.183 Kerr, 2002, Sources of variation in microarray experiments Khondoker, 2006, Statistical estimation of gene expression using multiple laser scans of microarrays, Bioinformatics, 22, 215, 10.1093/bioinformatics/bti790 Kotz, 1998 Lama, 2004, Some issues and perspectives in microarray data analysis in breast cancer: The need for an integrated research Lee, 2004 Lee, 2004 Lemarechal, 1977, Bundle methods in nonsmooth optimization Lindsey, 1999, A review of some extensions to generalized linear models, Statistics in Medicine, 18, 2223, 10.1002/(SICI)1097-0258(19990915/30)18:17/18<2223::AID-SIM251>3.0.CO;2-6 Luksan, 2001, Algorithm 811: Nda: Algorithms for nondifferentiable optimization, ACM Transactions on Mathematical Software, 27, 193, 10.1145/383738.383740 Mineo, 2005, A software tool for the exponential power distribution: The normalp package, j-J-STAT-SOFT, 12, 1 Pearson, 1962, The goodness-of-fit tests based on wn2 and un2, Biometrika, 49, 397, 10.2307/2333974 Pochet, 2004, Systematic benchmarking of microarray data classification: Assessing the role of non-linearity and dimensionality reduction, Bioinformatics, 20, 3185, 10.1093/bioinformatics/bth383 Puig, 2000, Tests of fit for the Laplace distribution, with applications, Technometrics, 42, 417, 10.2307/1270952 Purdom, 2005, Error distribution for gene expression data, Statistical Applications in Genetics and Molecular Biology, 4, 10.2202/1544-6115.1070 Qiu, 2005, The effects of normalization on the correlation structure of microarray data, BMC Bioinformatics, 6, 20, 10.1186/1471-2105-6-120 Quackenbush, 2002, Microarray data normalization and transformation, Nat Genet, 32 Suppl, 496, 10.1038/ng1032 R Development Core Team, 2004. R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN 3-900051-00-3, URL http://www.R-project.org Rider, 1924, A generalized law of error, Journal of the American Statistical Association, 19, 217, 10.2307/2277233 Rocke, 2001, A model for measurement error for gene expression arrays, Journal of Computational Biology, 8, 557, 10.1089/106652701753307485 Russo, 2003, Advantages and limitations of microarray technology in human cancer, Oncogene, 22, 6497, 10.1038/sj.onc.1206865 Schwarz, 1978, Estimating the dimension of a model, Annals of Statistics, 6, 461, 10.1214/aos/1176344136 Sharov, 2004, The limits of log-ratios, BMC Biotechnology, 4 2003, Classification in microarray experiments, 93 Stephens, 1974, Edf statistics for goodness of fit and some comparisons, Journal of the American Statistical Association, 69, 730, 10.2307/2286009 Stephens, 1976, Asymptotic results for goodness-of-fit statistics with unknown parameters, Annals of Statistics, 4, 357, 10.1214/aos/1176343411 Strimmer, 2003, Modeling gene expression measurement error: A quasi-likelihood approach, BMC Bioinformatics, 4, 10, 10.1186/1471-2105-4-10 Tarca, 2005, A robust neural networks approach for spatial and intensity-dependent normalization of CDNA microarray data, Bioinformatics, 21, 2674, 10.1093/bioinformatics/bti397 Tibshirani, 2002, Pre-validation and inference in microarrays, Statistical Applications in Genetics and Molecular Biology, 1, 1, 10.2202/1544-6115.1000 van ’t Veer, 2002, Gene expression profiling predicts clinical outcome of breast cancer, Nature, 415, 530, 10.1038/415530a Vianelli, 1963, La misura della variabilita condizionata in uno schema generale delle curve normali di frequenza, Statistica, 23, 447 Wit, 2003, Statistical adjustment of signal censoring in gene expression experiments, Bioinformatics, 19, 1055, 10.1093/bioinformatics/btg003 Wit, 2003 Workman, 2002, A new non-linear normalization method for reducing variability in DNA microarray experiments, Genome Biology, 3, 10.1186/gb-2002-3-9-research0048 Yang, 2002, Within the fold: Assessing differential expression measures and reproducibility in microarray assays, Genome Biology, 3 Yang, 2002, Normalization for CDNA microarray data: A robust composite method addressing single and multiple slide systematic variation, Nucleic Acids Research, 30, 10.1093/nar/30.4.e15 Yang, 2002, Design issues for CDNA microarray experiments, Nature Review Genetics, 3, 579, 10.1038/nrg863 Yeung, 2003, Multiclass classification of microarray data with repeated measurements: Application to cancer, Genome Biology, 4, R83, 10.1186/gb-2003-4-12-r83