Exploiting the complete efficacy of 3D-nitrogen-doped ZnO nanowires photoanode via type-II ZnS core-shell formation toward highly stable photoelectrochemical water splitting

Materials Today Physics - Tập 34 - Trang 101087 - 2023
Indrajit V. Bagal1, Pratik Mane2, Maheshwari Arunachalam3, Hyojung Bae2,4, Mandar A. Kulkarni1, Fawad Tariq1, Soon Hyung Kang3,4, Jun-Seok Ha2,4, Sang-Wan Ryu1,4
1Department of Physics, Chonnam National University, Gwangju, 61186, Republic of Korea
2School of Chemical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
3Department of Chemistry Education, Chonnam National University, Gwangju 61186, Republic of Korea
4Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 61186, Republic of Korea

Tài liệu tham khảo

Seong, 2022, Simple fabrication of BiVO 4 thin films synthesized by modified SILAR method: effect of film thickness, J. Electrochem. Soc., 169, 10.1149/1945-7111/ac40c9 Wen, 2020, A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting, Chem. Eng. J., 385, 10.1016/j.cej.2019.123878 Mane, 2022, Interface-engineered Z-scheme of BiVO4/g-C3N4 photoanode for boosted photoelectrochemical water splitting and organic contaminant elimination under solar light, Chemosphere, 308, 10.1016/j.chemosphere.2022.136166 Wu, 2017, Non-noble bimetallic NiMoO4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting, Nano Energy, 34, 8, 10.1016/j.nanoen.2017.02.004 Mane, 2022, Boosting the charge transfer kinetics in MOCVD prepared nitrogen doped hierarchical ZnO-Si nanowires for bifunctional photoelectrochemical water oxidation and organic contaminant removal, J. Electroanal. Chem., 922, 10.1016/j.jelechem.2022.116729 Li, 2018, MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting, Adv. Energy Mater., 8, 1 Wang, 2019, An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting, Catal. Today, 321–322, 100, 10.1016/j.cattod.2018.02.028 Govatsi, 2018, Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency, Int. J. Hydrogen Energy, 43, 4866, 10.1016/j.ijhydene.2018.01.087 Sun, 2012, 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation, Nanoscale, 4, 1515, 10.1039/c2nr11952h Yang, 2009, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Lett., 9, 2331, 10.1021/nl900772q Al O, 2006, ZnO - Al 2 O 3 and ZnO - TiO 2 core - shell nanowire dye-sensitized solar cells, J. Phys. Chem. B, 110, 22652, 10.1021/jp0648644 Bagal, 2022, Toward stable photoelectrochemical water splitting using NiOOH coated hierarchical nitrogen-doped ZnO-Si nanowires photoanodes, J. Energy Chem., 71, 45, 10.1016/j.jechem.2022.03.015 Li, 2006, Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method, J. Phys. Chem. B, 110, 14685, 10.1021/jp061563l Schrier, 2007, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications, Nano Lett., 7, 2377, 10.1021/nl071027k Bagal, 2018, Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching, J. Mater. Sci. Mater. Electron., 29, 18167, 10.1007/s10854-018-9929-8 Xu, 2011, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013, 10.1007/s12274-011-0160-7 Syrrokostas, 2016, High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth, Cryst. Growth Des., 16, 2140, 10.1021/acs.cgd.5b01812 Boyle, 2002, Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth, Chem. Commun., 2, 80, 10.1039/b110079n Peterson, 2004, Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions, Langmuir, 20, 5114, 10.1021/la049683c Ahn, 2008, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, J. Power Sources, 176, 387, 10.1016/j.jpowsour.2007.10.034 Zhong, 2014, A conductive ZnO-ZnGaON nanowire-array-on-a-film photoanode for stable and efficient sunlight water splitting, Energy Environ. Sci., 7, 1693, 10.1039/c3ee43806f Kushwaha, 2014, ZnS shielded ZnO nanowire photoanodes for efficient water splitting, Electrochim. Acta, 130, 222, 10.1016/j.electacta.2014.03.008 Wang, 2009, Growth and properties of ZnO/ZnS core/shell nanostructures, J. Phys. Conf. Ser., 152, 10.1088/1742-6596/152/1/012018 Ali, 2018, Enhanced band edge luminescence of ZnO nanorods after surface passivation with ZnS, Phys. E Low-Dimensional Syst. Nanostructures., 103, 329, 10.1016/j.physe.2018.06.028 Gao, 2005, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites, Chem. Mater., 17, 887, 10.1021/cm0485456 Geng, 2003, Synthesis and optical properties of S-doped ZnO nanowires, Appl. Phys. Lett., 82, 4791, 10.1063/1.1588735 Hsu, 2004, Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods, J. Appl. Phys., 96, 4671, 10.1063/1.1787905 Lin, 2001, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79, 943, 10.1063/1.1394173 Madhusudan, 2019, Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution, Appl. Catal. B Environ., 253, 379, 10.1016/j.apcatb.2019.04.008 Ranjith, 2018, Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties, Appl. Catal. B Environ., 237, 128, 10.1016/j.apcatb.2018.03.099 Song, 2020, Significant enhancement of the bias stability of Zn-O-N thin-film transistors via Si doping, Sci. Rep., 10, 1 Huang, 2013, Eliminating surface effects via employing nitrogen doping to significantly improve the stability and reliability of ZnO resistive memory, J. Mater. Chem. C, 1, 7593, 10.1039/c3tc31542h Liang, 2018, Surface crystal feature-dependent photoactivity of ZnO-ZnS composite rods: via hydrothermal sulfidation, RSC Adv., 8, 5063, 10.1039/C7RA13061A Mane, 2022, Boosting the charge transfer kinetics in MOCVD prepared nitrogen doped hierarchical ZnO-Si nanowires for bifunctional photoelectrochemical water oxidation and organic contaminant removal, J. Electroanal. Chem., 922, 10.1016/j.jelechem.2022.116729 Mane, 2022, Bifacial modulation of carrier transport in BiVO4 photoanode for stable photoelectrochemical water splitting via interface engineering, Adv. Sustain. Syst., 1 Chen, 2017, Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method, Appl. Catal. B Environ., 209, 110, 10.1016/j.apcatb.2017.02.049 Gao, 2018, 2502 Wang, 2013, Nanoparticle heterojunctions in ZnS-ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation, CrystEngComm, 15, 5688, 10.1039/c3ce40523k Rai, 2015, Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array, ACS Nano, 9, 6419, 10.1021/acsnano.5b02081 Lahiri, 2008, Surface functionalization of ZnO photocatalysts with monolayer ZnS, J. Phys. Chem. C, 112, 4304, 10.1021/jp7114109