Exploiting the complete efficacy of 3D-nitrogen-doped ZnO nanowires photoanode via type-II ZnS core-shell formation toward highly stable photoelectrochemical water splitting
Tài liệu tham khảo
Seong, 2022, Simple fabrication of BiVO 4 thin films synthesized by modified SILAR method: effect of film thickness, J. Electrochem. Soc., 169, 10.1149/1945-7111/ac40c9
Wen, 2020, A Ni2P nanocrystal cocatalyst enhanced TiO2 photoanode towards highly efficient photoelectrochemical water splitting, Chem. Eng. J., 385, 10.1016/j.cej.2019.123878
Mane, 2022, Interface-engineered Z-scheme of BiVO4/g-C3N4 photoanode for boosted photoelectrochemical water splitting and organic contaminant elimination under solar light, Chemosphere, 308, 10.1016/j.chemosphere.2022.136166
Wu, 2017, Non-noble bimetallic NiMoO4 nanosheets integrated Si photoanodes for highly efficient and stable solar water splitting, Nano Energy, 34, 8, 10.1016/j.nanoen.2017.02.004
Mane, 2022, Boosting the charge transfer kinetics in MOCVD prepared nitrogen doped hierarchical ZnO-Si nanowires for bifunctional photoelectrochemical water oxidation and organic contaminant removal, J. Electroanal. Chem., 922, 10.1016/j.jelechem.2022.116729
Li, 2018, MOF-based transparent passivation layer modified ZnO nanorod arrays for enhanced photo-electrochemical water splitting, Adv. Energy Mater., 8, 1
Wang, 2019, An overlapping ZnO nanowire photoanode for photoelectrochemical water splitting, Catal. Today, 321–322, 100, 10.1016/j.cattod.2018.02.028
Govatsi, 2018, Influence of the morphology of ZnO nanowires on the photoelectrochemical water splitting efficiency, Int. J. Hydrogen Energy, 43, 4866, 10.1016/j.ijhydene.2018.01.087
Sun, 2012, 3D branched nanowire heterojunction photoelectrodes for high-efficiency solar water splitting and H2 generation, Nanoscale, 4, 1515, 10.1039/c2nr11952h
Yang, 2009, Nitrogen-doped ZnO nanowire arrays for photoelectrochemical water splitting, Nano Lett., 9, 2331, 10.1021/nl900772q
Al O, 2006, ZnO - Al 2 O 3 and ZnO - TiO 2 core - shell nanowire dye-sensitized solar cells, J. Phys. Chem. B, 110, 22652, 10.1021/jp0648644
Bagal, 2022, Toward stable photoelectrochemical water splitting using NiOOH coated hierarchical nitrogen-doped ZnO-Si nanowires photoanodes, J. Energy Chem., 71, 45, 10.1016/j.jechem.2022.03.015
Li, 2006, Enhanced ultraviolet emission from ZnS-coated ZnO nanowires fabricated by self-assembling method, J. Phys. Chem. B, 110, 14685, 10.1021/jp061563l
Schrier, 2007, Optical properties of ZnO/ZnS and ZnO/ZnTe heterostructures for photovoltaic applications, Nano Lett., 7, 2377, 10.1021/nl071027k
Bagal, 2018, Facile morphology control of high aspect ratio patterned Si nanowires by metal-assisted chemical etching, J. Mater. Sci. Mater. Electron., 29, 18167, 10.1007/s10854-018-9929-8
Xu, 2011, One-dimensional ZnO nanostructures: solution growth and functional properties, Nano Res., 4, 1013, 10.1007/s12274-011-0160-7
Syrrokostas, 2016, High-quality, reproducible ZnO nanowire arrays obtained by a multiparameter optimization of chemical bath deposition growth, Cryst. Growth Des., 16, 2140, 10.1021/acs.cgd.5b01812
Boyle, 2002, Novel low temperature solution deposition of perpendicularly orientated rods of ZnO: substrate effects and evidence of the importance of counter-ions in the control of crystallite growth, Chem. Commun., 2, 80, 10.1039/b110079n
Peterson, 2004, Epitaxial chemical deposition of ZnO nanocolumns from NaOH solutions, Langmuir, 20, 5114, 10.1021/la049683c
Ahn, 2008, Enhancement of photoelectrochemical response by aligned nanorods in ZnO thin films, J. Power Sources, 176, 387, 10.1016/j.jpowsour.2007.10.034
Zhong, 2014, A conductive ZnO-ZnGaON nanowire-array-on-a-film photoanode for stable and efficient sunlight water splitting, Energy Environ. Sci., 7, 1693, 10.1039/c3ee43806f
Kushwaha, 2014, ZnS shielded ZnO nanowire photoanodes for efficient water splitting, Electrochim. Acta, 130, 222, 10.1016/j.electacta.2014.03.008
Wang, 2009, Growth and properties of ZnO/ZnS core/shell nanostructures, J. Phys. Conf. Ser., 152, 10.1088/1742-6596/152/1/012018
Ali, 2018, Enhanced band edge luminescence of ZnO nanorods after surface passivation with ZnS, Phys. E Low-Dimensional Syst. Nanostructures., 103, 329, 10.1016/j.physe.2018.06.028
Gao, 2005, Sonochemical synthesis, optical properties, and electrical properties of core/shell-type ZnO nanorod/CdS nanoparticle composites, Chem. Mater., 17, 887, 10.1021/cm0485456
Geng, 2003, Synthesis and optical properties of S-doped ZnO nanowires, Appl. Phys. Lett., 82, 4791, 10.1063/1.1588735
Hsu, 2004, Origin of defect emission identified by polarized luminescence from aligned ZnO nanorods, J. Appl. Phys., 96, 4671, 10.1063/1.1787905
Lin, 2001, Green luminescent center in undoped zinc oxide films deposited on silicon substrates, Appl. Phys. Lett., 79, 943, 10.1063/1.1394173
Madhusudan, 2019, Nature inspired ZnO/ZnS nanobranch-like composites, decorated with Cu(OH)2 clusters for enhanced visible-light photocatalytic hydrogen evolution, Appl. Catal. B Environ., 253, 379, 10.1016/j.apcatb.2019.04.008
Ranjith, 2018, Effective shell wall thickness of vertically aligned ZnO-ZnS core-shell nanorod arrays on visible photocatalytic and photo sensing properties, Appl. Catal. B Environ., 237, 128, 10.1016/j.apcatb.2018.03.099
Song, 2020, Significant enhancement of the bias stability of Zn-O-N thin-film transistors via Si doping, Sci. Rep., 10, 1
Huang, 2013, Eliminating surface effects via employing nitrogen doping to significantly improve the stability and reliability of ZnO resistive memory, J. Mater. Chem. C, 1, 7593, 10.1039/c3tc31542h
Liang, 2018, Surface crystal feature-dependent photoactivity of ZnO-ZnS composite rods: via hydrothermal sulfidation, RSC Adv., 8, 5063, 10.1039/C7RA13061A
Mane, 2022, Boosting the charge transfer kinetics in MOCVD prepared nitrogen doped hierarchical ZnO-Si nanowires for bifunctional photoelectrochemical water oxidation and organic contaminant removal, J. Electroanal. Chem., 922, 10.1016/j.jelechem.2022.116729
Mane, 2022, Bifacial modulation of carrier transport in BiVO4 photoanode for stable photoelectrochemical water splitting via interface engineering, Adv. Sustain. Syst., 1
Chen, 2017, Enhanced photoelectrochemical properties of ZnO/ZnSe/CdSe/Cu2-xSe core–shell nanowire arrays fabricated by ion-replacement method, Appl. Catal. B Environ., 209, 110, 10.1016/j.apcatb.2017.02.049
Gao, 2018, 2502
Wang, 2013, Nanoparticle heterojunctions in ZnS-ZnO hybrid nanowires for visible-light-driven photocatalytic hydrogen generation, CrystEngComm, 15, 5688, 10.1039/c3ce40523k
Rai, 2015, Piezo-phototronic effect enhanced UV/visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array, ACS Nano, 9, 6419, 10.1021/acsnano.5b02081
Lahiri, 2008, Surface functionalization of ZnO photocatalysts with monolayer ZnS, J. Phys. Chem. C, 112, 4304, 10.1021/jp7114109