Exploiting planarity in separation routines for the symmetric traveling salesman problem
Tài liệu tham khảo
Applegate, 1998, On the solution of traveling salesman problems, Doc. Math. Extra Volume, ICM III, 645
S. Arora, M. Grigni, D. Karger, P. Klein, A. Woloszyn, A polynomial-time approximation scheme for weighted planar graph TSP, in: Proceedings of the Ninth Annual ACM–SIAM Symposium on Discrete Algorithms, 1998, pp. 33–41
Barahona, 1986, On the cut polytope, Math. Program., 36, 157, 10.1007/BF02592023
Boyd, 2007, On the domino-parity inequalities for the STSP, Math. Program., 110, 501, 10.1007/s10107-006-0011-6
Carr, 1997, Separating clique tree and bipartition inequalities having a fixed number of handles and teeth in polynomial time, Math. Oper. Res., 22, 257, 10.1287/moor.22.2.257
Carr, 1996, Separating over classes of TSP inequalities defined by 0 node-lifting in polynomial time, vol. 1084, 460
Carr, 2004, Separation algorithms for classes of STSP inequalities arising from a new STSP relaxation, Math. Oper. Res., 29, 80, 10.1287/moor.1030.0058
Chalermsook, 2004, A deterministic near-linear time algorithm for finding minimum cuts in planar graphs
Chvátal, 1973, Edmonds polytopes and weakly Hamiltonian graphs, Math. Program., 5, 29, 10.1007/BF01580109
Cook, 2005, A study of domino-parity and k-parity constraints for the TSP, vol. 3509, 452
Dantzig, 1954, Solution of a large-scale traveling salesman problem, Oper. Res., 2, 393
Deineko, 2006, Exact algorithms for the hamiltonian cycle problem in planar graphs, Oper. Res. Lett., 34, 269, 10.1016/j.orl.2005.04.013
Dijkstra, 1959, A note on two problems in connection with graphs, Numer. Math., 1, 269, 10.1007/BF01386390
Dorn, 2005, Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions, vol. 3669, 95
Edmonds, 1965, Maximum matching and a polyhedron with 0-1 vertices, J. Res. Nat. Bur. Standards, 69B, 125, 10.6028/jres.069B.013
Fleischer, 2006, Polynomial-time separation of a superclass of simple comb inequalities, Math. Oper. Res., 31, 696, 10.1287/moor.1060.0214
Fleischer, 1999, Separating maximally violated comb inequalites in planar graphs, Math. Oper. Res., 24, 130, 10.1287/moor.24.1.130
Goldberg, 1988, A new approach to the maximum flow problem, J. ACM, 35, 921, 10.1145/48014.61051
Grötschel, 1987, A cutting plane algorithm for minimum perfect 2-matching, Computing, 39, 327, 10.1007/BF02239975
Grötschel, 1988
Grötschel, 1979, On the symmetric travelling salesman problem I: Inequalities, Math. Program., 16, 265, 10.1007/BF01582116
Grötschel, 1979, On the symmetric travelling salesman problem II: Lifting theorems and facets, Math. Program., 16, 281, 10.1007/BF01582117
Held, 1962, A dynamic programming approach to sequencing problems, SIAM Rev., 10, 196
Henzinger, 1997, Faster shortest-path algorithms for planar graphs, J. Comput. System Sci., 55, 3, 10.1006/jcss.1997.1493
Jünger, 1995, The traveling salesman problem, vol. 7, 225
Jünger, 1997, The traveling salesman problem
Letchford, 2000, Separating a superclass of comb inequalities in planar graphs, Math. Oper. Res., 25, 443, 10.1287/moor.25.3.443.12213
Letchford, 2002, Polynomial-time separation of simple comb inequalities, vol. 2337
Letchford, 2005, A fast algorithm for minimum weight odd cuts and circuits in planar graphs, Oper. Res. Lett., 33, 625, 10.1016/j.orl.2004.12.001
Letchford, 2004, A faster exact separation algorithm for blossom inequalities, vol. 3064
Lipton, 1979, A separator theorem for planar graphs, SIAM J. Appl. Math., 36, 177, 10.1137/0136016
Naddef, 2002, Polyhedral theory and branch-and-cut algorithms for the symmetric TSP
Naddef, 2004, The domino inequalities for the symmetric traveling salesman problem
Naddef, 2003, The domino inequalities: New facets for the symmetric traveling salesman polytope, Math. Program., 98, 223, 10.1007/s10107-003-0403-9
Nagamochi, 1994, Implementing an efficient minimum capacity cut algorithm, Math. Program., 67, 325, 10.1007/BF01582226
Padberg, 1982, Odd minimum cut-sets and b-matchings, Math. Oper. Res., 7, 67, 10.1287/moor.7.1.67
Padberg, 1991, A branch-and-cut algorithm for the resolution of large-scale symmetric travelling salesman problems, SIAM Rev., 33, 60, 10.1137/1033004
Papadimitriou, 1993, The traveling salesman problem with distances one and two, Math. Oper. Res., 18, 1, 10.1287/moor.18.1.1
Shih, 1990, Unifying maximum cut and minimum cut of a planar graph, IEEE Trans. Comput., 39, 694, 10.1109/12.53581
Williams, 1964, Algorithm 232: Heapsort, ACM Commun., 7, 347, 10.1145/512274.512284