Exploiting budding yeast natural variation for industrial processes

Current Genetics - Tập 62 - Trang 745-751 - 2016
Francisco A. Cubillos1,2,3
1Centro de Estudios en Ciencia y Tecnología de Alimentos (CECTA), Universidad de Santiago de Chile (USACH), Santiago, Chile
2Millennium Nucleus for Fungal Integrative and Synthetic Biology (MN-FISB), Santiago, Chile
3Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile

Tóm tắt

For the last two decades, the natural variation of the yeast Saccharomyces cerevisiae has been massively exploited with the aim of understanding ecological and evolutionary processes. As a result, many new genetic variants have been uncovered, providing a large catalogue of alleles underlying complex traits. These alleles represent a rich genetic resource with the potential to provide new strains that can cope with the growing demands of industrial fermentation processes. When surveyed in detail, several of these variants have proven useful in wine and beer industries by improving nitrogen utilisation, fermentation kinetics, ethanol production, sulphite resistance and aroma production. Here, I illustrate how allele-specific expression and polymorphisms within the coding region of GDB1 underlie fermentation kinetic differences in synthetic wine must. Nevertheless, the genetic basis of how GDB1 variants and other natural alleles interact in foreign genetic backgrounds remains unclear. Further studies in large sets of strains, recombinant hybrids and multiple parental pairs will broaden our knowledge of the molecular and genetic basis of trait adaptation for utilisation in applied and industrial processes.

Tài liệu tham khảo

Ambroset C, Petit M, Brion C, Sanchez I, Delobel P, Guerin C, Chiapello H, Nicolas P, Bigey F, Dequin S, Blondin B (2011) Deciphering the molecular basis of wine yeast fermentation traits using a combined genetic and genomic approach. G3 (Bethesda) 1:263–281. doi:10.1534/g3.111.000422 Apweiler E, Sameith K, Margaritis T, Brabers N, van de Pasch L, Bakker LV, van Leenen D, Holstege FC, Kemmeren P (2012) Yeast glucose pathways converge on the transcriptional regulation of trehalose biosynthesis. BMC Genom 13:239. doi:10.1186/1471-2164-13-239 Barnett JA (2007) A history of research on yeasts 10: foundations of yeast genetics. Yeast 24:799–845. doi:10.1002/yea.1513 Bergstrom A, Simpson JT, Salinas F, Barre B, Parts L, Zia A, Nguyen Ba AN, Moses AM, Louis EJ, Mustonen V, Warringer J, Durbin R, Liti G (2014) A high-definition view of functional genetic variation from natural yeast genomes. Mol Biol Evol 31:872–888. doi:10.1093/molbev/msu037 Brice C, Sanchez I, Bigey F, Legras JL, Blondin B (2014) A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genom 15:495. doi:10.1186/1471-2164-15-495 Chidi BS, Rossouw D, Bauer FF (2016) Identifying and assessing the impact of wine acid-related genes in yeast. Curr Genet 62:149–164. doi:10.1007/s00294-015-0498-6 Cromie GA, Hyma KE, Ludlow CL, Garmendia-Torres C, Gilbert TL, May P, Huang AA, Dudley AM, Fay JC (2013) Genomic sequence diversity and population structure of Saccharomyces cerevisiae assessed by RAD-seq. G3 (Bethesda) 3:2163–2171. doi:10.1534/g3.113.007492-&gt Cubillos FA, Coustham V, Loudet O (2012) Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. Curr Opin Plant Biol 15:192–198. doi:10.1016/j.pbi.2012.01.005 Cubillos FA, Parts L, Salinas F, Bergstrom A, Scovacricchi E, Zia A, Illingworth CJ, Mustonen V, Ibstedt S, Warringer J, Louis EJ, Durbin R, Liti G (2013) High-resolution mapping of complex traits with a four-parent advanced intercross yeast population. Genetics 195:1141–1155. doi:10.1534/genetics.113.155515 Duitama J, Sanchez-Rodriguez A, Goovaerts A, Pulido-Tamayo S, Hubmann G, Foulquie-Moreno MR, Thevelein JM, Verstrepen KJ, Marchal K (2014) Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast. BMC Genom 15:207. doi:10.1186/1471-2164-15-207 Ehrenreich IM, Gerke JP, Kruglyak L (2009) Genetic dissection of complex traits in yeast: insights from studies of gene expression and other phenotypes in the BYxRM cross. Cold Spring Harb Symp Quant Biol 74:145–153. doi:10.1101/sqb.2009.74.013 Fay JC, McCullough HL, Sniegowski PD, Eisen MB (2004) Population genetic variation in gene expression is associated with phenotypic variation in Saccharomyces cerevisiae. Genome Biol 5:R26. doi:10.1186/gb-2004-5-4-r26 Fraser HB, Levy S, Chavan A, Shah HB, Perez JC, Zhou Y, Siegal ML, Sinha H (2012) Polygenic cis-regulatory adaptation in the evolution of yeast pathogenicity. Genome Res 22:1930–1939. doi:10.1101/gr.134080.111 Gerke J, Lorenz K, Cohen B (2009) Genetic interactions between transcription factors cause natural variation in yeast. Science 323:498–501. doi:10.1126/science.1166426 Gibbons JG, Rinker DC (2015) The genomics of microbial domestication in the fermented food environment. Curr Opin Genet Dev 35:1–8. doi:10.1016/j.gde.2015.07.003 Gutierrez A, Beltran G, Warringer J, Guillamon JM (2013) Genetic basis of variations in nitrogen source utilization in four wine commercial yeast strains. PLoS ONE 8:e67166. doi:10.1371/journal.pone.0067166 Hallin J, Martens K, Young A, Zackrisson M, Salinas F, Parts L, Warringer J, Lit G (2016) Powerful decomposition of complex traits in a diploid model using Phased Outbred Lines. bioRxiv http://dx.doi.org/10.1101/042176 Hou J, Sigwalt A, Pflieger D, Peter J, Montigny Jd, Dunham M, Schacherer J (2016) The hidden complexity of Mendelian traits across yeast natural populations. bioRxiv http://dx.doi.org/10.1101/039693 Hubmann G, Mathe L, Foulquie-Moreno MR, Duitama J, Nevoigt E, Thevelein JM (2013) Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation. Biotechnol Biofuels 6:87. doi:10.1186/1754-6834-6-87 Jara M, Cubillos FA, Garcia V, Salinas F, Aguilera O, Liti G, Martinez C (2014) Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PLoS ONE 9:e86533. doi:10.1371/journal.pone.0086533 Kessi-Perez EI, Araos S, Garcia V, Salinas F, Abarca V, Larrondo LF, Martinez C, Cubillos FA (2016) RIM15 antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Res. doi:10.1093/femsyr/fow021 Legras JL, Merdinoglu D, Cornuet JM, Karst F (2007) Bread, beer and wine: Saccharomyces cerevisiae diversity reflects human history. Mol Ecol 16:2091–2102. doi:10.1111/j.1365-294X.2007.03266.x Liti G (2015) The fascinating and secret wild life of the budding yeast S. cerevisiae. Elife. doi:10.7554/eLife.05835 Liti G, Louis EJ (2012) Advances in quantitative trait analysis in yeast. PLoS Genet 8:e1002912. doi:10.1371/journal.pgen.1002912 Liti G, Carter DM, Moses AM, Warringer J, Parts L, James SA, Davey RP, Roberts IN, Burt A, Koufopanou V, Tsai IJ, Bergman CM, Bensasson D, O’Kelly MJ, van Oudenaarden A, Barton DB, Bailes E, Nguyen AN, Jones M, Quail MA, Goodhead I, Sims S, Smith F, Blomberg A, Durbin R, Louis EJ (2009) Population genomics of domestic and wild yeasts. Nature 458:337–341. doi:10.1038/nature07743 Marsit S, Dequin S (2015) Diversity and adaptive evolution of Saccharomyces wine yeast: a review. FEMS Yeast Res. doi:10.1093/femsyr/fov067 McManus CJ, Coolon JD, Duff MO, Eipper-Mains J, Graveley BR, Wittkopp PJ (2010) Regulatory divergence in Drosophila revealed by mRNA-seq. Genome Res 20:816–825. doi:10.1101/gr.102491.109 Pais TM, Foulquie-Moreno MR, Hubmann G, Duitama J, Swinnen S, Goovaerts A, Yang Y, Dumortier F, Thevelein JM (2013) Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast. PLoS Genet 9:e1003548. doi:10.1371/journal.pgen.1003548 Parts L, Cubillos FA, Warringer J, Jain K, Salinas F, Bumpstead SJ, Molin M, Zia A, Simpson JT, Quail MA, Moses A, Louis EJ, Durbin R, Liti G (2011) Revealing the genetic structure of a trait by sequencing a population under selection. Genome Res 21:1131–1138. doi:10.1101/gr.116731.110 Peter J, Schacherer J (2016) Population genomics of yeasts: towards a comprehensive view across a broad evolutionary scale. Yeast 33:73–81. doi:10.1002/yea.3142 Querol A, Fernandez-Espinar MT, del Olmo M, Barrio E (2003) Adaptive evolution of wine yeast. Int J Food Microbiol 86:3–10 Salinas F, Cubillos FA, Soto D, Garcia V, Bergstrom A, Warringer J, Ganga MA, Louis EJ, Liti G, Martinez C (2012) The genetic basis of natural variation in oenological traits in Saccharomyces cerevisiae. PLoS ONE 7:e49640. doi:10.1371/journal.pone.0049640 Salinas F, de Boer CG, Abarca V, Garcia V, Cuevas M, Araos S, Larrondo LF, Martinez C, Cubillos FA (2016) Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci Rep 6:21849. doi:10.1038/srep21849 Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces sensu stricto complex. C R Biol 334:229–236. doi:10.1016/j.crvi.2010.12.016 Skelly DA, Merrihew GE, Riffle M, Connelly CF, Kerr EO, Johansson M, Jaschob D, Graczyk B, Shulman NJ, Wakefield J, Cooper SJ, Fields S, Noble WS, Muller EG, Davis TN, Dunham MJ, Maccoss MJ, Akey JM (2013) Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Res 23:1496–1504. doi:10.1101/gr.155762.113 Snoek T, Verstrepen KJ, Voordeckers K (2016) How do yeast cells become tolerant to high ethanol concentrations? Curr Genet. doi:10.1007/s00294-015-0561-3 Steensels J, Snoek T, Meersman E, Picca Nicolino M, Voordeckers K, Verstrepen KJ (2014) Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiol Rev 38:947–995. doi:10.1111/1574-6976.12073 Steyer D, Ambroset C, Brion C, Claudel P, Delobel P, Sanchez I, Erny C, Blondin B, Karst F, Legras JL (2012) QTL mapping of the production of wine aroma compounds by yeast. BMC Genom 13:573. doi:10.1186/1471-2164-13-573 Swinnen S, Schaerlaekens K, Pais T, Claesen J, Hubmann G, Yang Y, Demeke M, Foulquie-Moreno MR, Goovaerts A, Souvereyns K, Clement L, Dumortier F, Thevelein JM (2012) Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis. Genome Res 22:975–984. doi:10.1101/gr.131698.111 Tesniere C, Brice C, Blondin B (2015) Responses of Saccharomyces cerevisiae to nitrogen starvation in wine alcoholic fermentation. Appl Microbiol Biotechnol 99:7025–7034. doi:10.1007/s00253-015-6810-z Tilloy V, Ortiz-Julien A, Dequin S (2014) Reduction of ethanol yield and improvement of glycerol formation by adaptive evolution of the wine yeast Saccharomyces cerevisiae under hyperosmotic conditions. Appl Environ Microbiol 80:2623–2632. doi:10.1128/AEM.03710-13 Voordeckers K, Kominek J, Das A, Espinosa-Cantu A, De Maeyer D, Arslan A, Van Pee M, van der Zande E, Meert W, Yang Y, Zhu B, Marchal K, DeLuna A, Van Noort V, Jelier R, Verstrepen KJ (2015) Adaptation to High Ethanol Reveals Complex Evolutionary Pathways. PLoS Genet 11:e1005635. doi:10.1371/journal.pgen.1005635 Wang QM, Liu WQ, Liti G, Wang SA, Bai FY (2012) Surprisingly diverged populations of Saccharomyces cerevisiae in natural environments remote from human activity. Mol Ecol. doi:10.1111/j.1365-294X.2012.05732.x Wilkening S, Lin G, Fritsch ES, Tekkedil MM, Anders S, Kuehn R, Nguyen M, Aiyar RS, Proctor M, Sakhanenko NA, Galas DJ, Gagneur J, Deutschbauer A, Steinmetz LM (2014) An evaluation of high-throughput approaches to QTL mapping in Saccharomyces cerevisiae. Genetics 196:853–865. doi:10.1534/genetics.113.160291 Wittkopp PJ, Kalay G (2012) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13:59–69. doi:10.1038/nrg3095 Wray GA (2007) The evolutionary significance of cis-regulatory mutations. Nat Rev Genet 8:206–216. doi:10.1038/nrg2063 Zimmer A, Durand C, Loira N, Durrens P, Sherman DJ, Marullo P (2014) QTL dissection of Lag phase in wine fermentation reveals a new translocation responsible for Saccharomyces cerevisiae adaptation to sulfite. PLoS ONE 9:e86298. doi:10.1371/journal.pone.0086298