Exploitation of E. coli for the production of penicillin G amidase: a tool for the synthesis of semisynthetic β-lactam antibiotics
Tóm tắt
Penicillin G amidase/acylases from microbial sources is a unique enzyme that belongs to the N-terminal nucleophilic hydrolase structural superfamily. It catalyzes the selective hydrolysis of side chain amide/acyl bond of penicillins and cephalosporins whereas the labile amide/acyl bond in the β-lactam ring remains intact. This review summarizes the production aspects of PGA from various microbial sources at optimized conditions. The minimal yield from wild strains has been extensively improved using varying strain improvement techniques like recombination and mutagenesis; further applied for the subsequent synthesis of 6-aminopenicillanic acid, which is an intermediate molecule for synthesis of a wide range of novel β-lactam antibiotics. Immobilization of PGA has also been attempted to enhance the durability of enzyme for the industrial purposes. The present review provides an emphasis on exploitation of E. coli to enhance the microbial production of PGA. The latest achievements in the production of recombinant enzymes have also been discussed. Besides E. coli, other potent microbial strains with PGA activity must be explored to enhance the yields.
Tài liệu tham khảo
Wu Z, Liu C, Zhang Z, Zheng R, Zheng Y (2020) Amidase as a versatile tool in amide-bond cleavage: from molecular features to biotechnological applications. Biotechnol Adv 43:107574
Srirangan K, Orr V, Akawi L, Westbrook A, Moo-Young M, Chou CP (2013) Biotechnological advances on penicillin G acylase: pharmaceutical implications, unique expression mechanism and production strategies. Biotechnol Adv 31(8):1319–1332
Martínez-Hernández JL, Mata-Gómez MA, Aguilar-González CN, Ilyina A (2010) A process to produce penicillin G acylase by surface-adhesion fermentation using Mucor griseocyanus to obtain 6-aminopenicillanic acid by penicillin G hydrolysis. Appl Biochem Biotechnol 160(7):2045–2053
Hassan ME (2016) Production, immobilization and industrial uses of penicillin G acylase. Int J Curr Res Rev 8(15):11–22
Silva RG, Souza VR, Nucci ER, Pinotti LM, Cruz AJ, Giordano RC, Giordano RL (2006) Using a medium of free amino acids to produce penicillin G acylase in fed-batch cultivations of Bacillus megaterium ATCC 14945. Braz J Chem Eng 23(1):37–43
Verhaert RM, Riemens AM, Van der Laan JM, Van Duin J, Quax WJ (1997) Molecular cloning and analysis of the gene encoding the thermostable penicillin G acylase from Alcaligenes faecalis. Appl Environ Microbiol 63(9):3412–3418
Buchholz K (2016) A breakthrough in enzyme technology to fight penicillin resistance—industrial application of penicillin amidase. Appl Microbiol Biotechnol 100(9):3825–3839
Cobos-Puc L, Rodríguez-Herrera R, Cano-Cabrera JC, Aguayo-Morales H, Silva-Belmares SY, Gallegos AC, Hernández JL (2020) Classical and new pharmaceutical uses of bacterial penicillin G acylase. Curr Pharm Biotechnol 21(4):287–297
Souza VR, Silva AC, Pinotti LM, Araújo HS, Giordano RD (2005) Characterization of the penicillin G acylase from Bacillus megaterium ATCC 14945. Braz Arch Biol Technol 48:105–111
Li K, Mohammed MA, Zhou Y, Tu H, Zhang J, Liu C, Chen Z, Burns R, Hu D, Ruso JM, Tang Z (2020) Recent progress in the development of immobilized penicillin G acylase for chemical and industrial applications: a mini-review. Polym Adv Technol 31(3):368–388
Chandel AK, Rao LV, Narasu ML, Singh OV (2008) The realm of penicillin G acylase in β-lactam antibiotics. Enzym Microb Technol 42(3):199–207
Volpato G, Rodrigues RC, Fernandez-Lafuente R (2010) Use of enzymes in the production of semi-synthetic penicillins and cephalosporins: drawbacks and perspectives. Curr Med Chem 17(32):3855–3873
Bruns W, Hoppe J, Tsai HS, Brüning HJ, Maywald F, Collins J, Mayer H (1985) Structure of the penicillin acylase gene from Escherichia coli: a periplasmic enzyme that undergoes multiple proteolytic processing. J Mol Appl Genet 3(1):36–44
Erarslan A, Terzi I, Güray A, Bermek E (1991) Purification and kinetics of penicillin G acylase from a mutant strain of Escherichia coli ATCC 11105. J Chem Technol Biotechnol 51(1):27–40
Illanes A, Valencia P (2017) Industrial and therapeutic enzymes: penicillin acylase. In: Current Developments in Biotechnology and Bioengineering. Elsevier, pp 267–305
McVey CE, Walsh MA, Dodson GG, Wilson KS, Brannigan JA (2001) Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism. J Mol Biol 313(1):139–150
Balci H, Ozturk MT, Pijning T, Ozturk SI, Gumusel F (2014) Improved activity and pH stability of E. coli ATCC 11105 penicillin acylase by error-prone PCR. Appl Microbiol Biotechnol 98(10):4467–4477
Shewale JG, Sivaraman H (1989) Penicillin acylase: enzyme production and its application in the manufacture of 6-APA. Process Biochem 24(4):146–154
Deak PM, Lutz-Wahl S, Bothe H, Fischer L (2003) Bioreactor cultivation of Escherichia coli for production of recombinant penicillin G amidase from Alcaligenes faecalis. Biotechnol Lett 25(5):397–400
Sakaguchi K, Murao S (1950) A preliminary report on a new enzyme, “penicillin-amidase”. Nippon Nōgeikagaku Kaishi 23(9):411
Chisti Y, Moo-Young M (1991) Fermentation technology, bioprocessing, scale-up and manufacture. Biotechnology: the science and the business 167-209.
Matsumoto K (1993) Production of 6-APA, 7-ACA and 7-ADCA by immobilized penicillin and cephalosporin amidases. Industrial application of immobilized biocatalysts 67-88.
Avinash VS, Pundle AV, Ramasamy S, Suresh CG (2016) Penicillin acylases revisited: importance beyond their industrial utility. Crit Rev Biotechnol 36(2):303–316
Self DA, Kay G, Lilly MD, Dunnill P (1969) The conversion of benzyl penicillin to 6-aminopenieillanie acid using an insoluble derivative of penieillin amidase. Biotechnol Bioeng 11(3):337–348
Robas N, Zouheiry H, Branlant G, Branlant C (1993) Improved penicillin amidase production using a genetically engineered mutant of Escherichia coli ATCC 11105. Biotechnol Bioeng 41(1):14–24
Rajendhran J, Krishnakumar V, Gunasekaran P (2002) Optimization of a fermentation medium for the production of penicillin G acylase from Bacillus sp. Lett Appl Microbiol 35(6):523–527
José L, Martinez H, Iliyná A, Malfavon LD, Sánchez O, Dustet MJ (2003) Partial characterization of penicillin acylase from fungi Aspergillus fumigatus and Mucor gryseocianum. Mosc Univ Chem Bull 44:53–56
Das S, Gayen JR, Pal A, Ghosh K, Rosazza JP, Samanta TB (2004) Purification, substrate specificity, and N-terminal amino acid sequence analysis of a β-lactamase-free penicillin amidase from Alcaligenes sp. Appl Microbiol Biotechnol 65(3):281–286
Chakraborty J, Hossain MZ, Tripathi A, Ghosh W, Samanta TB (2012) Taxonomical characterization of a penicillin amidase producing novel strain of Achromobacter xylosoxidans: proposal of A. xylosoxidans subsp. indiges subsp. nov. Dev Microbiol Mol Biol 3:55–65
Priya S, Suganya R (2013) Production and partial characterization of penicillin amidase produced by Bacillus megaterium from Temple Puja Wastes. IJAAEEE 2(1):44–47
Cano-Cabrera JC, Palomo-Ligas L, Flores-Gallegos AC, Martínez-Hernández JL, Rodríguez-Herrera R (2020) Penicillin G acylase production by Mucor griseocyanus and the partial genetic analysis of its pga gene. Int Microbiol:1–9
Bigot Y, Lutcher F, Hamelin MH, Périquet G (1992) The 28S ribosomal RNA-encoding gene of Hymenoptera: inserted sequences in the retrotransposon-rich regions. Gene 121(2):347–352
Ljubijankić G, Storici F, Glišin V, Bruschi CV (1999) Synthesis and secretion of Providencia rettgeri and Escherichia coli heterodimeric penicillin amidases in Saccharomyces cerevisiae. Gene 228(1-2):225–232
Vohra PK, Sharma R, Kashyap DR, Tewari R (2001) Enhanced production of penicillin G acylase from a recombinant Escherichia coli. Biotechnol Lett 23(7):531–535
Marešová H, Štěpánek V, Kyslik P (2001) A chemostat culture as a tool for the improvement of a recombinant E. coli strain over-producing penicillin G acylase. Biotechnol Bioeng 75(1):46–52
Ševo M, Degrassi G, Skoko N, Venturi V, Ljubijankić G (2002) Production of glycosylated thermostable Providencia rettgeri penicillin G amidase in Pichia pastoris. FEMS Yeast Res 1(4):271–277
Kasche V, Galunsky B, Ignatova Z (2003) Fragments of pro-peptide activate mature penicillin amidase of Alcaligenes faecalis. Eur J Biochem 270(23):4721–4728
Ignatova Z, Mahsunah A, Georgieva M, Kasche V (2003) Improvement of posttranslational bottlenecks in the production of penicillin amidase in recombinant Escherichia coli strains. Appl Environ Microbiol 69(2):1237–1245
Wen Y, Feng M, Yuan Z, Zhou P (2005) Expression and overproduction of recombinant penicillin G acylase from Kluyvera citrophila in Escherichia coli. Enzym Microb Technol 37(2):233–237
De León-Rodríguez A, Rivera-Pastrana D, Medina-Rivero E, Flores-Flores JL, Estrada-Baltazar A, Ordóñez-Acevedo LG, de la Rosa AP (2006) Production of penicillin acylase by a recombinant Escherichia coli using cheese whey as substrate and inducer. Biomol Eng 23(6):299–305
Arshad R, Farooq S, Ali SS (2010) Improvement of penicillin G acylase expression in Escherichia coli through UV induced mutations. Braz J Microbiol 41(4):1133–1141
Karthikeyan R, Surianarayanan M, Sudharshan S, Gunasekaran P, Baran MA (2011) Biocalorimetric and respirometric studies on production of Penicillin G acylase from Bacillus badius pac in E. coli DH5α. Biochem Eng J 55(3):223–239
Torres LL, Ferreras ER, Cantero Á, Hidalgo A, Berenguer J (2012) Functional expression of a penicillin acylase from the extreme thermophile Thermus thermophilus HB27 in Escherichia coli. Microb Cell Factories 11(1):1–2
Orr V, Scharer J, Moo-Young M, Honeyman CH, Fenner D, Crossley L, Suen SY, Chou CP (2012) Integrated development of an effective bioprocess for extracellular production of penicillin G acylase in Escherichia coli and its subsequent one-step purification. J Biotechnol 161(1):19–26
Marešová H, Palyzová A, Plačková M, Grulich M, Rajasekar VW, Štěpánek V, Kyslíková E, Kyslík P (2017) Potential of Pichia pastoris for the production of industrial penicillin G acylase. Folia Microbiol 62(5):417–424
Pan X, Yu Q, Chu J, Jiang T, He B (2018) Fitting replacement of signal peptide for highly efficient expression of three penicillin G acylases in E. coli. Appl Microbiol Biotechnol 102(17):7455–7464
Borčinová M, Raschmanová H, Zamora I, Looser V, Marešová H, Hirsch S, Kyslík P, Kovar K (2020) Production and secretion dynamics of prokaryotic Penicillin G acylase in Pichia pastoris. Appl Microbiol Biotechnol 104(13):5787–5800
Parmar A, Kumar H, Marwaha SS, Kennedy JF (2000) Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18(4):289–301
Nandi A, Pan S, Potumarthi R, Danquah MK, Sarethy IP (2014) A proposal for six sigma integration for large-scale production of penicillin G and subsequent conversion to 6-APA. J Anal Methods Chem:413616. https://doi.org/10.1155/2014/413616
Wilms B, Hauck A, Reuss M, Syldatk C, Mattes R, Siemann M, Altenbuchner J (2001) High-cell-density fermentation for production of L-N-carbamoylase using an expression system based on the Escherichia coli rhaBAD promoter. Biotechnol Bioeng 73(2):95–103
Viegas SC, Schmidt D, Kasche V, Arraiano CM, Ignatova Z (2005) Effect of the increased stability of the penicillin amidase mRNA on the protein expression levels. FEBS Lett 579(22):5069–5073
Ohashi H, Katsuta Y, Nagashima M, Kamei T, Yano M (1989) Expression of the Arthrobacter viscosus penicillin G acylase gene in Escherichia coli and Bacillus subtilis. Appl Environ Microbiol 55(6):1351–1356
Kang JH, Hwang Y, Yoo OJ (1991) Expression of penicillin G acylase gene from Bacillus megaterium ATCC 14945 in Escherichia coli and Bacillus subtilis. J Biotechnol 17(2):99–108
Cai G, Zhu S, Yang S, Zhao G, Jiang W (2004) Cloning, overexpression, and characterization of a novel thermostable penicillin G acylase from Achromobacter xylosoxidans: probing the molecular basis for its high thermostability. Appl Environ Microbiol 70(5):2764–2770
Cheng S, Wei D, Song Q, Zhao X (2006) Immobilization of permeabilized whole cell penicillin G acylase from Alcaligenes faecalis using pore matrix crosslinked with glutaraldehyde. Biotechnol Lett 28(14):1129–1133
Wang T, Zhu H, Ma X, Fei Z, Ma Y, Wei D (2006) Enhancing enzymatic activity of penicillin G acylase by coexpressing pcm gene. Appl Microbiol Biotechnol 72(5):953–958
Jiang YM, Tong WY, Wei DZ (2007) Effects of induction starting time and Ca2+ on expression of active penicillin G acylase in Escherichia coli. Biotechnol Prog 23(5):1031–1037
Hunt PD, Tolley SP, Ward RJ, Hill C, Dodson GG (1990) Expression, purification and crystallization of penicillin G acylase from Escherichia coli ATCC 11105. Protein Eng Des Sel 3(7):635–639
Gottesman S (1996) Proteases and their targets in Escherichia coli. Annu Rev Genet 30(1):465–506
Liu YC, Liao LC, Wu WT (2000) Cultivation of recombinant Escherichia coli to achieve high cell density with a high level of penicillin G acylase activity. Proceedings of the National Science Council, Republic of China. Part B Life Sci 24(4):156–160
Narayanan N, Xu Y, Chou CP (2006) High-level gene expression for recombinant penicillin acylase production using the araB promoter system in Escherichia coli. Biotechnol Prog 22(6):1518–1523
Rajendhran J, Gunasekaran P (2007) Molecular cloning and characterization of thermostable β-lactam acylase with broad substrate specificity from Bacillus badius. J Biosci Bioeng 103(5):457–463
Kafshnochi M, Farajnia S, Aboshof R, Babaei H, Aminolroayaee M (2010) Cloning and over-expression of Penicillin G acylase in Escherichia coli BL21. Afr J Biotechnol 9(18):2697–2701
Mönster A, Villain L, Scheper T, Beutel S (2013) One-step-purification of penicillin G amidase from cell lysate using ion-exchange membrane adsorbers. J Membr Sci 444:359–364
Arshad R, Farooq S, Iqbal N, Ali SS (2006) Mutagenic effect of acridine orange on the expression of penicillin G acylase and β-lactamase in Escherichia coli. Lett Appl Microbiol 42(2):94–101
Erarslan A, Güray A (1991) Kinetic investigation of penicillin G acylase from a mutant strain of Escherichia coli ATCC 11105 immobilized on oxirane–acrylic beads. J Chem Technol Biotechnol 51(2):181–195
Forney LJ, Wong DC (1989) Alteration of the catalytic efficiency of penicillin amidase from Escherichia coli. Appl Environ Microbiol 55(10):2556–2560
Xu H, Petersen EI, Petersen SB, El-Gewely MR (1999) Random mutagenesis libraries: optimization and simplification by PCR. Biotechniques 27(6):1102–1108
Hanefeld U, Gardossi L, Magner E (2009) Understanding enzyme immobilisation. Chem Soc Rev 38(2):453–468
Illanes A, Wilson L (2014) Synthesis of b-lactam antibiotics with penicillin acylases. In: Illanes A,(Eds). Enzyme biocatalysis: principles and applications. Springer, United Kingdom, pp 273–292
Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347(7-8):905–926
Sheldon RA, van Pelt S (2013) Enzyme immobilisation in biocatalysis: why, what and how. Chem Soc Rev 42(15):6223–6235
De Vroom E, Gist Brocades BV (2009) Penicillin G acylase immobilized with a crosslinked mixture of gelled gelatin and amino polymer. United States Patent US 6(060):268
Norouzian D, Javadpour S, Moazami N, Akbarzadeh A (2002) Immobilization of whole cell penicillin G acylase in open pore gelatin matrix. Enzym Microb Technol 30(1):26–29
Hsiau LT, Lee WC, Wang FS (1997) Immobilization of whole-cell penicillin G acylase by entrapping within polymethacrylamide beads. Appl Biochem Biotechnol 62(2):303–315
Arroyo M, De la Mata I, Acebal C, Castillón MP (2003) Biotechnological applications of penicillin acylases: state-of-the-art. Appl Microbiol Biotechnol 60(5):507–514
Abian O, Mateo C, Fernández-Lorente G, Palomo JM, Fernández-Lafuente R, Guisán JM (2001) Stabilization of immobilized enzymes against water-soluble organic cosolvents and generation of hyper-hydrophilic micro-environments surrounding enzyme molecules. Biocatal Biotransfor 19(5-6):489–503
Cao L, van Rantwijk F, Sheldon RA (2000) Cross-linked enzyme aggregates: a simple and effective method for the immobilization of penicillin acylase. Org Lett 2(10):1361–1364
Katchalski-Katzir E, Kraemer DM (2000) Eupergit® C, a carrier for immobilization of enzymes of industrial potential. J Mol Catal B-Enzym 10(1-3):157–176
Mateo C, Abian O, Fernandez-Lafuente R, Guisan JM (2000) Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzym Microb Technol 26(7):509–515
Wang W, Deng L, Peng ZH, Xiao X (2007) Study of the epoxydized magnetic hydroxyl particles as a carrier for immobilizing penicillin G acylase. Enzym Microb Technol 40(2):255–261
Chen CI, Chen CW, Huang CW, Liu YC (2007) Simultaneous purification and immobilization of penicillin G acylase using bifunctional membrane. J Membr Sci 298(1-2):24–29
Mohy Eldin MS, El Enshasy HA, Hassan ME, Haroun B, Hassan EA (2012) Covalent immobilization of penicillin G acylase onto amine-functionalized PVC membranes for 6-APA production from penicillin hydrolysis process. II. Enzyme immobilization and characterization. J Appl Polym Sci 125(5):3820–3828
Liu R, Huang W, Pan S, Li Y, Yu L, He D (2020) Covalent immobilization and characterization of penicillin G acylase on magnetic Fe2O3/Fe3O4 heterostructure nanoparticles prepared via a novel solution combustion and gel calcination process. Int J Biol Macromol 162:1587–1596
Ivanov AE, Edink E, Kumar A, Galaev IY, Arendsen AF, Bruggink A, Mattiasson B (2003) Conjugation of penicillin acylase with the reactive copolymer of N-isopropylacrylamide: a step toward a thermosensitive industrial biocatalyst. Biotechnol Prog 19(4):1167–1175
Coleman K (2011) Diazabicyclooctanes (DBOs): a potent new class of non-β-lactam β-lactamase inhibitors. Curr Opin Microbiol 14(5):550–555
Batchelor FR, Doyle FP, Nayler JH, Rolinson GN (1959) Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183(4656):257–258
Rolinson GN (1952) Respiration of Penicillium chrysogenum in penicillin fermentations. Microbiol 6(3-4):336–343
Rolinson GN (1998) Forty years of beta-lactam research. J Antimicrob Chemother 41(6):589–603
Tipper DJ, Strominger JL (1965) Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Natl Acad Sci U S A 54(4):1133
Kong KF, Schneper L, Mathee K (2010) Beta-lactam antibiotics: from antibiosis to resistance and bacteriology. Apmis 118(1):1–36
Worthington RJ, Melander C (2013) Overcoming resistance to β-lactam antibiotics. J Organomet Chem 9:4207–4213
Abraham EP, Chain E (1940) An enzyme from bacteria able to destroy penicillin. Nature 146(3713):837
Wright PM, Seiple IB, Myers AG (2014) The evolving role of chemical synthesis in antibacterial drug discovery. Angew Chem Int 53(34):8840–8869
Pawlowski AC, Johnson JW, Wright GD (2016) Evolving medicinal chemistry strategies in antibiotic discovery. Curr Opin Biotechnol 42:108–117
Nayler JH (1991) Semi-synthetic approaches to novel penicillins. Trends Biochem Sci 16:234–237
Beta-lactam and Beta-lactamase Inhibitors Market by Drug Class, Disease and Route of Administration: Global Opportunity Analysis and Industry Forecast 2019-2028. Report Linker. ID: 5816614. https://www.reportlinker.com/p05816614/?utm_source=PRN. Accessed 9 June 2020
Penicillin G Acylase Market - Global Industry Analysis, Size, Share, Growth, Trends, and Forecast 2019 – 2027. Transparency market research. https://www.transparencymarketresearch.com/penicillin-g-acylase-market.html. Accessed 9 June 2020
Gaude GS, Hattiholli J (2013) Rising bacterial resistance to beta-lactam antibiotics: Can there be solutions. J NTR Univ Health Sci 2(1):4