Explicitly representing soil microbial processes in Earth system models

Global Biogeochemical Cycles - Tập 29 Số 10 - Trang 1782-1800 - 2015
William R. Wieder1, Steven Allison2,3, Eric A. Davidson4, Katerina Georgiou5,6, Oleksandra Hararuk7, Yujie He2,8, F. M. Hopkins2,9, Yiqi Luo10, Matthew J. Smith11, Benjamin N. Sulman12, Katherine EO Todd-Brown10,13, Ying‐Ping Wang14, Jianyang Xia10,15, Xiaofeng Xu16
1Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, Colorado, USA
2Department of Earth System Science, University of California, Irvine, California, USA
3Department of Ecology and Evolutionary Biology, University of California, Irvine, California, USA
4Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
5Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA
6Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
7Natural Resources Canada, Canadian Forest Service, Pacific Forestry Centre, Victoria, British Columbia, Canada
8Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana, USA
9Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California USA
10Department of Microbiology & Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
11Computational Science Laboratory, Microsoft Research, Cambridge, UK
12Department of Biology, Indiana University, Bloomington, Indiana, USA
13Pacific Northwest National Laboratory, Richland, Washington, USA
14CSIRO Ocean and Atmosphere Flagship, Aspendale, Victoria, Australia
15Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
16Department of Biological Sciences, University of Texas at El Paso, Texas, USA

Tóm tắt

Abstract

Microbes influence soil organic matter decomposition and the long‐term stabilization of carbon (C) in soils. We contend that by revising the representation of microbial processes and their interactions with the physicochemical soil environment, Earth system models (ESMs) will make more realistic global C cycle projections. Explicit representation of microbial processes presents considerable challenges due to the scale at which these processes occur. Thus, applying microbial theory in ESMs requires a framework to link micro‐scale process‐level understanding and measurements to macro‐scale models used to make decadal‐ to century‐long projections. Here we review the diversity, advantages, and pitfalls of simulating soil biogeochemical cycles using microbial‐explicit modeling approaches. We present a roadmap for how to begin building, applying, and evaluating reliable microbial‐explicit model formulations that can be applied in ESMs. Drawing from experience with traditional decomposition models, we suggest the following: (1) guidelines for common model parameters and output that can facilitate future model intercomparisons; (2) development of benchmarking and model‐data integration frameworks that can be used to effectively guide, inform, and evaluate model parameterizations with data from well‐curated repositories; and (3) the application of scaling methods to integrate microbial‐explicit soil biogeochemistry modules within ESMs. With contributions across scientific disciplines, we feel this roadmap can advance our fundamental understanding of soil biogeochemical dynamics and more realistically project likely soil C response to environmental change at global scales.

Từ khóa


Tài liệu tham khảo

10.1111/J.1365-2486.2008.01674.X

10.1111/j.1461-0248.2012.01807.x

10.3389/fmicb.2014.00571

10.1038/ngeo846

10.1029/2002GB001903

10.5194/bg-9-3979-2012

10.1128/AEM.00191-08

10.1111/j.1365-2486.2009.02006.x

10.1029/2010JG001593

10.1029/2011JG001913

10.1111/gcb.12031

10.5194/gmd-7-2193-2014

10.5194/bg-7-1915-2010

10.3389/fmicb.2013.00333

10.1093/acprof:oso/9780199575923.003.0017

10.1111/j.1461-0248.2008.01251.x

10.1111/j.1365-2486.2009.02040.x

10.1016/0038-0717(82)90099-2

10.1007/s00442-011-2133-7

10.1038/nature13731

Ciais P., 2013, Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 465

10.1111/gcb.12113

10.1111/ele.12069

10.1073/pnas.1502956112

10.1038/nature04514

10.1111/j.1365-2486.2011.02546.x

10.1111/gcb.12718

10.1016/j.soilbio.2011.05.018

10.1111/j.1461-0248.2011.01593.x

10.5194/bg-10-821-2013

10.1111/j.1365-2486.2012.02665.x

10.1111/j.1461-0248.2007.01113.x

10.1016/bs.aecr.2015.02.001

10.5194/gmd-7-2683-2014

FAO, 2012, Harmonized World Soil Database (Version 1.2)

10.1007/BF00386231

10.1890/05-1839

10.1038/ismej.2011.159

10.5194/gmdd-8-3293-2015

10.1111/j.1469-185X.1988.tb00725.x

10.1111/j.1461-0248.2004.00579.x

10.1093/plankt/fbp069

10.1016/j.foreco.2004.03.018

10.1016/j.soilbio.2008.07.020

10.1038/nclimate1796

10.1007/s00248-003-9001-x

10.1111/j.1365-2486.2011.02615.x

10.1016/j.scitotenv.2007.11.013

10.1016/j.geoderma.2009.02.007

10.1038/nclimate2361

10.1111/j.1365-2435.2010.01707.x

10.1890/ES14-00092.1

10.1002/2013JG002535

10.1111/gcb.12827

Harmon M.(2013) LTER Intersite Fine Litter Decomposition Experiment (LIDET) 1990 to 2002. Long‐Term Ecological Research. Forest Science Data Bank Corvallis OR. [Database]. [Available athttp://andrewsforest.oregonstate.edu/data/abstract.cfm?dbcode=TD023 2 April 2015.]

10.1111/j.1365-2486.2008.01837.x

10.1111/ele.12451

10.5194/bg-11-4477-2014

10.1371/journal.pone.0105992

10.1002/2014EO110004

10.1890/07-1119.1

10.1890/11-1600.1

10.1073/pnas.1120603109

10.1016/j.soilbio.2014.04.028

10.1038/nature07028

10.1038/nclimate2538

10.5194/essd-5-3-2013

10.1111/j.1365-2486.2009.01866.x

10.1007/s10533-006-9019-5

10.1038/ngeo844

10.1097/00010694-197705000-00005

Jenkinson D. S., 1987, Modelling the turnover of organic matter in long‐term experiments at Rothamsted, INTECOL Bull., 15, 1

10.1111/ele.12269

10.1038/nature13604

10.5194/bg-8-2895-2011

10.5194/bg-8-1477-2011

10.1111/j.1365-2486.2010.02278.x

10.1890/05-0150

10.1038/nclimate1716

10.5194/bg-10-7109-2013

10.5194/bgd-12-5757-2015

10.1016/j.soilbio.2010.02.021

10.1016/j.soilbio.2015.01.025

10.2136/sssaj2013.08.0370nafsc

10.1016/j.soilbio.2009.06.016

10.1890/06-2057.1

10.1007/s10533-013-9948-8

10.1111/j.1461-0248.2010.01482.x

10.1016/J.Agee.2010.12.010

10.1038/35098065

10.1890/09-1275.1

10.5194/bg-9-3857-2012

10.1002/2014GL061467

10.1016/j.soilbio.2009.02.031

10.1126/science.1074153

10.1073/pnas.1018189108

10.1016/J.Soilbio.2005.03.021

10.1007/s10533-011-9658-z

10.1146/annurev.mi.03.100149.002103

10.1890/0012-9615(2001)071[0557:Amfsvd]2.0.Co;2

10.1007/s00442-008-1076-0

10.1016/S0929-1393(99)00043-8

10.1890/0012-9615(2006)076[0151:Atmold]2.0.Co;2

10.1038/nature01136

10.1146/annurev-ecolsys-102209-144647

10.1073/pnas.0403491101

10.2307/1932179

10.1016/0038-0717(75)90014-0

10.2136/sssaj1987.03615995005100050015x

10.1007/Bf02180320

10.1126/science.1134853

Paul E. A., 1996, Soil Organic Matter in Temperate Agroecosystems: Long‐Term Experiments in North America, 432

10.2136/sssaj1992.03615995005600020023x

10.1111/j.1461-0248.2010.01570.x

10.1111/j.1461-0248.2012.01827.x

10.1175/JHM540.1

10.1111/j.1365-2486.2012.02639.x

10.1029/96GB01981

10.1007/s10021-001-0018-z

10.1890/03-5303

10.1029/2004GB002254

10.1146/annurev.ecolsys.37.091305.110039

10.1007/s00248-011-9965-x

10.1007/BF02257566

10.5194/gmd-7-1335-2014

10.1016/s0038-0717(02)00074-3

10.1111/j.1751-7915.2009.00087.x

10.1016/B978-012631260-7/50015-7

10.3389/fmicb.2012.00348

10.1016/s0038-0717(03)00015-4

10.1038/nature10386

10.1111/geb.12070

10.1890/11-0811.1

10.5194/gmd-5-1045-2012

10.5194/bg-9-3013-2012

10.5194/bgd-12-10857-2015

10.1111/j.1461-0248.2008.01245.x

10.1007/s10533-014-0030-y

10.1007/s10533-014-0058-z

10.1007/BF00418675

10.1890/12-2119.1

10.5194/bg-12-653-2015

10.1046/j.1365-2389.2002.00458.x

10.5194/Bg-10-583-2013

Stark J. M., 1995, Mechanisms for soil moisture effects on activity of nitrifying bacteria, Appl. Environ. Microbiol., 61, 218, 10.1128/aem.61.1.218-221.1995

10.1111/j.1365-2486.2011.02545.x

10.1890/08-0082.1

10.1038/nclimate2436

10.1038/nclimate2438

10.1029/2009JD011724

10.1097/00010694-192907000-00005

10.5194/bg-10-1717-2013

10.5194/bg-11-2341-2014

10.1038/38260

10.1046/j.1365-2486.2002.00477.x

10.1111/j.1461-0248.2008.01230.x

10.1007/s10533-011-9636-5

10.1126/science.1249534

10.4141/cjss81-024

Viovy N.(2014) CRUNCEP dataset version 5. [Available athttp://dods.extra.cea.fr/data/p529viov/cruncep/readme.htm.]

10.1890/03-5120

10.1890/12-0681.1

10.1038/ismej.2014.120

10.1029/2006GB002797

10.1016/j.agrformet.2009.07.009

10.5194/bg-11-1817-2014

10.5194/bgd-12-14647-2015

10.1038/nclimate1951

10.1002/2013GB004665

10.5194/bg-11-3899-2014

Wieder W. R. J.Boehnert G. B.Bonan andM.Langseth(2014c) Regridded harmonized world soil database v1.2. [Available at:http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center Oak Ridge Tenn. doi:10.3334/ORNLDAAC/1247.

10.5194/gmdd-8-2011-2015

10.5194/bg-5-749-2008

10.1111/j.1469-8137.2008.02488.x

10.1111/gcb.12172

10.1016/j.cageo.2010.10.007

10.1029/2005GB002468

10.1111/geb.12029

10.1029/2009GB003474

10.1111/nph.12697

10.1093/jpe/rtn002

10.1002/2014GL061399