Explicit methods of numerical integration for parabolic equations
Tóm tắt
Từ khóa
Tài liệu tham khảo
G. B. Alalykin, V. T. Zhukov, A. V. Zabrodin et al., “Method for Numerical Modeling of 2D Nonstationary Flows in Heat-Conducting Gas in Three-Temperature Approximation in Complex-Shaped Areas with Moving Boundaries (IFI), R@D report 8-1-04 (Moscow, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 2004).
Nuclear Fusion with Inertial Confinement. Current State and Prospects for Power Engineering, Ed. by B. Yu. Sharkov (Fizmatlit, Moscow, 2005) [in Russian].
Numerical Solution of Multidimensional Problems in Gas Dynamics, Ed. by S. K. Godunov (Nauka, Moscow, 1976) [in Russian].
V. O. Lokutsievskii and O. V. Lokutsievskii, “Application of Chebyshev Parameters to Numerical Solution of Some Evolutionary Problems,” Preprint No. 99 (Moscow, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1984).
V. O. Lokutsievskii and O. V. Lokutsievskii, “Numerical Solution of Boundary-Value Problems for Equations of a Parabolic Type,” Dokl. Akad. Nauk SSSR 291(3) 540 (1986).
V. T. Zhukov, “Numerical Experiments on Solving Thermal Conductivity Equation by the Local Iteration Method,” Preprint No. 97 (Moscow, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1984).
V. T. Zhukov, “Difference Schemes of Local Iterations for Parabolic Equations,” Preprint No. 73 (Moscow, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1986).
V. T. Zhukov, “Explicit Iteration Schemes for Parabolic Equations,” Vopr. Atomn. Nauki I Tekn., Ser. Mat. Mod. Fiz. Proc.n No. 3, 40 (1993).
A. S. Shvedov and V. T. Zhukov, “Explicit iterative difference schemes for parabolic equations,” Russian J. Numer. Anal. Math. Modelling, 13(2) 133 (1998).
L. A. Lyusternik, “Difference Apptoximations of Laplace Operator,” Usp. Mat. Nauk, vol. IX, no. 2 (60) 3 (1954).
Yuan Chao Ting, “Some Difference Schemes for the Solution of the First Boundary Problem for Linear Partial Differential Equations,” Candidate’s Dissertation in Mathematics and Physics (MGU, Moscow, 1958).
Yuan Chao Ting, “Some Difference Schemes for Numerical Solution of a Parabolic Differential Equation,” in Mat. Sb./ (Moscow, 1960) Vol. 50(92) No. 4, pp. 391–422.
V. K. Saul’ev, Integrating Parabolic Equations by the Grid Method, Ed. by L. A. Lyusternik (Fizmatgiz, Moscow, 1960) [in Russian].
I. M. Gel’fand and O. V. Lokutsievskii, “Difference Schemes for the Solution of the Thermal Conductivity Equation,” in S. K. Godunov and V. S. Ryaben’kii, Introduction to the Theory of Difference Schemes (Fizmatgiz, Moscow, 1962) [in Russian].
V. I. Lebedev, “How to Solve Stiff Systems of Differential Equations by Explicit Methods,” in Computational Processes and Systems, no. 8, Ed. by G. I. Marchuk (Nauka, Moscow, 1991) [in Russian].
J. G. Verwer, “A class of Stabilized Three-Step Runge — Kutta Methods for the Numerical Integration of Parabolic Equations,” ACM Ñîòð. Appl. Math. 3, 155 (1977).
J. G. Verwer, “An Implementation of a Class of Stabilized Explicit Methods for the Time Integration of Parabolic Equations,” ACM Trans. Math. Software 6, 188 (1980).
J. G. Verwer, B. P. Sommeijer, and L. F. Hundsdorfe, RKC Time-Stepping for Advection-Diffusion-Reaction Problems” J. of Comput. Phys. 201(1) 61 (2004).
H. J. Stetter, Analysis of Discretization Methods for Ordinary Differential Equations (Springer, Berlin, 1973).
E. Hairer and G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problem (Springer, Berlin, 1996).
A. S. Shvedov, “Triviality of a Difference Scheme with Variable Time Steps for the Thermal Conductivity Equation.” J. Vych. Mat. i Mat. Phys. 37(1) 69 (1997).
N. N. Kalitkin and I. V. Ritus, “Complex Scheme for the Solution of Parabolic Equations,” Preprint No. 32 (Moscow, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, 1981).
L.V. Dorodnitsyn, “Approximations of Quasi-Gasdynamic System of Equations Leading to Explicit of Algorithms,” Mat. Mod. 18(4) 77 (2006).
A. A. Samarskii, Theory of Difference Schemes (Nauka, Moscow, 1977) [in Russian].
A. A. Samarskii and E. S. Nikolaev, Methods for the Solution of Finite-Difference Equations (Nauka, Moscow, 1978) [in Russian].
R. P. Fedorenko, Introduction to Computational Physics (MFTI, Moscow, 1994) [in Russian].
R. P. Fedorenko, “Iteration Methods For the Solution of Elliptic Difference Equations,” Usp. Mat. Nauk, XXVIII no. 2 (170), 129 (1973).
F. R. Gantmaher, Theory of Matrices (Nauka, Moscow, 1966) [in Russian].
V. T. Zhukov, A.V. Zabrodin, and O. B. Feodoritova, Specifics of Numerical Modeling of the Target of Iterational Thermonuclear Fusion in the Approximation of Heat-Conducting Gas Dynamics,” J. Vych. Mat. i Mat. Phys. 34(12) 1852 (1994).
L. F. Richardson, “The Approximate Solution by Finite Differences of Physical Problems Involving Differential Equations with an Application to the Stresses in a Masonry Dam,” Roy. Soc. Philos. -Trans. 210A 307 (1910).
M. K. Gavurin, Application of Polynomials of the Best Approximation to the Improvement in the Convergence of Iteration Processes,” Usp. Mat. Nauk, 5:3(37), 156 (1950).
D. Flanders and G. Shorttey, “Numerical Determination of Fundamental Modes,” J. Appl. Phys. 21(12), 1326 (1950).
P. L. Chebyshev, Problems of the Least Values Connected with the Approximated Representation of Functions, in Collected Works, V.1 (St. Petersburg, 1899) [in Russian].
V. I. Lebedev and S. A. Finogenov, “Selection Order of Iteration Parameters in Chebyshev Cyclic Method,” J. Vych. Mat. i Mat. Phys., 11(2) (1971).
K. N. Babenko, Fundamentals of Numerical Analysis (NITS RHD, Moscow, 2002) [in Russian].
I. P. Natanson, Constructive Function Theory (GITTL, Moscow, 1949) [in Russian].
S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Introduction to Theory) (Nauka, Moscow, 1973) [in Russian].
N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].
S. K. Godunov, Equations of Mathematical Physics (Nauka, Moscow, 1979) [in Russian].
A.V. Zabrodin and S. B. Pekarchuk, “A Method for the Numerical Solution of a Nonlinear Equation of Thermal Conductivity on a Parallelogram Point Grid,” Vopr. Atomn. Nauki I Tekhniki, Ser. Met. I Progr. Chisl. Resheniys Zadach Mat. Fiz., 2(10) 14 (1982).