Explicit formulas for the multivariate resultant

Journal of Pure and Applied Algebra - Tập 164 Số 1-2 - Trang 59-86 - 2001
Carlos D’Andrea1, Alicia Dickenstein1
1Departamento de Matemática, F.C.E y N., UBA, (1428) Buenos Aires, Argentina

Tóm tắt

Từ khóa


Tài liệu tham khảo

W. Auzinger, H.J. Stetter, An elimination algorithm for the computation of all zeros of a system of multivariate polynomial equations, in: Proceedings of International Conference on Numerical Mathematics, International Series of Numerical Mathematics, vol. 86, Birkhäuser, Basel, 1988, pp. 12–30.

Becker, 1996, Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula, 79

Canny, 1988

Canny, 1992, Generalised characteristic polynomials, J. Symbolic Comput., 9, 241, 10.1016/S0747-7171(08)80012-0

Canny, 1992, The implicit representation of rational parametric surfaces, J. Symbolic Comput., 13, 485, 10.1016/S0747-7171(10)80008-2

Cattani, 1998, Residues and resultants, J. Math. Sci. Univ. Tokyo, 5, 119

Cayley, 1848, On the theory of elimination, Cambridge Dublin Math. J., 3, 116

Chardin, 1993, The resultant via a Koszul complex, 29

Chardin, 1994, Formules à la Macaulay pour les sous-résultants en plusieurs variables, C. R. Acad. Sci. Paris, Sér. I, 319, 433

Chardin, 1995, Multivariate subresultants, J. Pure Appl. Algebra, 101, 129, 10.1016/0022-4049(95)90926-C

E.-W. Chionh, M. Zhang, R.N. Goldman, Fast computation of the Bezout and Dixon resultant matrices, preprint, 2000. Available at: http://www.cs.rice.edu/ ̃mzhang.

M. Demazure, Une définition constructive du résultant, Notes Informelles de Calcul Formel 2, prepublication du Centre de Mathématiques de l’ École Polytechnique, 1984.

Dixon, 1908, The eliminant of three quantics in two independent variables, Proc. London Math. Soc., 6, 49

Emiris, 1999, Matrices in elimination theory, J. Symbolic Comput., 28, 3, 10.1006/jsco.1998.0266

N. Fitchas, M. Giusti, F. Smietanski, Sur la complexité du théorème de zéros, Approximation & Optimization, vol. 8, Verlag Peter Lang, Frankfurt am Main, 1995, pp. 274–329.

Gelfand, 1994

Jouanolou, 1997, Formes d'inertie et résultant: un formulaire, Adv. Math., 126, 119, 10.1006/aima.1996.1609

T. Krick, L.M. Pardo, M. Sombra, Sharp estimates for the arithmetic Nullstellensatz, Duke J. Math., to appear.

E. Kunz, Kähler Differentials, Advanced Lectures in Mathematics, Friedr. Vieweg, Braunschweig, 1986.

Lazard, 1981, Résolution des Systèmes d’ Équations algebriques, Theoret. Comput. Sci., 15, 77, 10.1016/0304-3975(81)90064-5

Macaulay, 1902, Some formulae in elimination, Proc. London Math. Soc., 133, 3, 10.1112/plms/s1-35.1.3

Renegar, 1992, On the computational complexity of the first-order theory of the reals, parts I, II, III, J. Symbolic Comput., 13, 255, 10.1016/S0747-7171(10)80003-3

Rojas, 1999, Solving degenerate sparse polynomial systems faster, J. Symbolic Comput., 28, 155, 10.1006/jsco.1998.0271

T. Saxena, Efficient variable elimination using resultants, Ph.D. Thesis, SUNY at Albany, 1997. Available at: http://www.cs.albany.edu/ ̃saxena.

Scheja, 1975, ber Spurfunktionen bei vollstndigen Durchschnitten, J. Reine Angew. Math., 278/279, 174

A.K. Tsikh, Multidimensional Residues and their Applications, Translations of Mathematical Monographs 103, American Mathematical Society, Providence, RI, 1992.

Weyman, 1994, Determinantal formulas for multigraded resultants, J. Algebraic Geom., 3, 569