Explicit formulas for the Schrödinger wave operators in
Tài liệu tham khảo
Agmon, 1975, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 2, 151
Amrein, 1996, C0-groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, vol. 135
Bellissard, 2012, Scattering theory for lattice operators in dimension d⩾3, Rev. Math. Phys., 24, 1250020, 10.1142/S0129055X12500201
Bollé, 1988, Threshold scattering in two dimensions, Ann. Inst. Henri Poincaré, a Phys. Théor., 48, 175
M.B. Erdoğan, W.R. Green, A weighted dispersive estimate for Schrödinger operators in dimension two, Commun. Math. Phys., http://dx.doi.org/10.1007/s00220-012-1640-7, in press, preprint on http://arxiv.org/abs/1202.0050.
M.B. Erdoğan, W.R. Green, Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy, Trans. Amer. Math. Soc., in press, preprint on http://arxiv.org/abs/1201.2206.
Isozaki, 2012, On the wave operators for the Friedrichs–Faddeev model, Ann. Inst. Henri Poincaré, 13, 1469, 10.1007/s00023-012-0161-4
Jeffrey, 1995
Jensen, 2001, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13, 717, 10.1142/S0129055X01000843
Jensen, 2002, A remark on Lp-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 225, 633, 10.1007/s002200100603
Kato, 1959, Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math., 12, 403, 10.1002/cpa.3160120302
Kellendonk, 2011, Levinsonʼs theorem and higher degree traces for the Aharonov–Bohm operators, J. Math. Phys., 52, 052102, 10.1063/1.3582943
Kellendonk, 2006, Levinsonʼs theorem for Schrödinger operators with point interaction: a topological approach, J. Phys. A, 39, 14397, 10.1088/0305-4470/39/46/011
Kellendonk, 2008, On the structure of the wave operators in one dimensional potential scattering, Math. Phys. Electron. J., 14, 1
Kellendonk, 2012, On the wave operators and Levinsonʼs theorem for potential scattering in R3, Asian-Eur. J. Math., 5, 1250004-1, 10.1142/S1793557112500040
Khuri, 2005, Universality of low-energy scattering in 2+1 dimensions: the nonsymmetric case, J. Math. Phys., 46, 032103, 10.1063/1.1843274
Khuri, 2009, Low-energy potential scattering in two and three dimensions, J. Math. Phys., 50, 072105, 10.1063/1.3167803
Kuroda, 1973, Scattering theory for differential operators. I. Operator theory, J. Math. Soc. Jpn., 25, 75, 10.2969/jmsj/02510075
Pankrashkin, 2011, Spectral and scattering theory for the Aharonov–Bohm operators, Rev. Math. Phys., 23, 53, 10.1142/S0129055X11004205
Richard, 2010, New formulae for the wave operators for a rank one interaction, Integral Equations Operator Theory, 66, 283, 10.1007/s00020-010-1745-3
Richard
Schlag, 2005, Dispersive estimates for Schrödinger operators in dimension two, Commun. Math. Phys., 257, 87, 10.1007/s00220-004-1262-9
Weder
Yafaev, 1992, Mathematical Scattering Theory, vol. 105
Yafaev, 2010, Mathematical Scattering Theory. Analytic Theory, vol. 158
Yajima, 1999, Lp-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 208, 125, 10.1007/s002200050751