Explicit formulas for the Schrödinger wave operators in

Comptes Rendus Mathematique - Tập 351 - Trang 209-214 - 2013
Serge Richard1, Rafael Tiedra de Aldecoa2
1Université de Lyon, université Lyon-1, CNRS, UMR 5208, Institut Camille-Jordan, 43, bd du 11-Novembre-1918, 69622 Villeurbanne cedex, France
2Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile

Tài liệu tham khảo

Agmon, 1975, Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), 2, 151 Amrein, 1996, C0-groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians, vol. 135 Bellissard, 2012, Scattering theory for lattice operators in dimension d⩾3, Rev. Math. Phys., 24, 1250020, 10.1142/S0129055X12500201 Bollé, 1988, Threshold scattering in two dimensions, Ann. Inst. Henri Poincaré, a Phys. Théor., 48, 175 M.B. Erdoğan, W.R. Green, A weighted dispersive estimate for Schrödinger operators in dimension two, Commun. Math. Phys., http://dx.doi.org/10.1007/s00220-012-1640-7, in press, preprint on http://arxiv.org/abs/1202.0050. M.B. Erdoğan, W.R. Green, Dispersive estimates for Schrödinger operators in dimension two with obstructions at zero energy, Trans. Amer. Math. Soc., in press, preprint on http://arxiv.org/abs/1201.2206. Isozaki, 2012, On the wave operators for the Friedrichs–Faddeev model, Ann. Inst. Henri Poincaré, 13, 1469, 10.1007/s00023-012-0161-4 Jeffrey, 1995 Jensen, 2001, A unified approach to resolvent expansions at thresholds, Rev. Math. Phys., 13, 717, 10.1142/S0129055X01000843 Jensen, 2002, A remark on Lp-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 225, 633, 10.1007/s002200100603 Kato, 1959, Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math., 12, 403, 10.1002/cpa.3160120302 Kellendonk, 2011, Levinsonʼs theorem and higher degree traces for the Aharonov–Bohm operators, J. Math. Phys., 52, 052102, 10.1063/1.3582943 Kellendonk, 2006, Levinsonʼs theorem for Schrödinger operators with point interaction: a topological approach, J. Phys. A, 39, 14397, 10.1088/0305-4470/39/46/011 Kellendonk, 2008, On the structure of the wave operators in one dimensional potential scattering, Math. Phys. Electron. J., 14, 1 Kellendonk, 2012, On the wave operators and Levinsonʼs theorem for potential scattering in R3, Asian-Eur. J. Math., 5, 1250004-1, 10.1142/S1793557112500040 Khuri, 2005, Universality of low-energy scattering in 2+1 dimensions: the nonsymmetric case, J. Math. Phys., 46, 032103, 10.1063/1.1843274 Khuri, 2009, Low-energy potential scattering in two and three dimensions, J. Math. Phys., 50, 072105, 10.1063/1.3167803 Kuroda, 1973, Scattering theory for differential operators. I. Operator theory, J. Math. Soc. Jpn., 25, 75, 10.2969/jmsj/02510075 Pankrashkin, 2011, Spectral and scattering theory for the Aharonov–Bohm operators, Rev. Math. Phys., 23, 53, 10.1142/S0129055X11004205 Richard, 2010, New formulae for the wave operators for a rank one interaction, Integral Equations Operator Theory, 66, 283, 10.1007/s00020-010-1745-3 Richard Schlag, 2005, Dispersive estimates for Schrödinger operators in dimension two, Commun. Math. Phys., 257, 87, 10.1007/s00220-004-1262-9 Weder Yafaev, 1992, Mathematical Scattering Theory, vol. 105 Yafaev, 2010, Mathematical Scattering Theory. Analytic Theory, vol. 158 Yajima, 1999, Lp-boundedness of wave operators for two-dimensional Schrödinger operators, Commun. Math. Phys., 208, 125, 10.1007/s002200050751