Explicit contact force model for superellipses by Fourier transform and application to superellipse packing

Powder Technology - Tập 361 - Trang 112-123 - 2020
S.M. Arifuzzaman1, Kejun Dong1, Qinfu Hou2, Haiping Zhu3, Qinghua Zeng3
1Centre for Infrastructure Engineering, School of Computing, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia
2ARC Research Hub for Computational Particle Technology, Department of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
3School of Computing, Engineering and Mathematics, Western Sydney University, NSW 2751, Australia

Tài liệu tham khảo

Cundall, 1979, A discrete numerical model for granular assemblies, Geotechnique, 29, 47, 10.1680/geot.1979.29.1.47 Zhu, 2008, Discrete particle simulation of particulate systems: a review of major applications and findings, Chem. Eng. Sci., 63, 5728, 10.1016/j.ces.2008.08.006 Sakai, 2015, Discrete element simulation for the evaluation of solid mixing in an industrial blender, Chem. Eng. J., 279, 821, 10.1016/j.cej.2015.04.130 Basinskas, 2016, Numerical study of the mixing efficiency of a batch mixer using the discrete element method, Powder Technol., 301, 815, 10.1016/j.powtec.2016.07.017 Zhong, 2016, DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications, Powder Technol., 302, 108, 10.1016/j.powtec.2016.07.010 Govender, 2019, A numerical investigation into the effect of angular particle shape on blast furnace burden topography and percolation using a GPU solved discrete element model, Chem. Eng. Sci., 204, 9, 10.1016/j.ces.2019.03.077 Kureck, 2019, Industrial scale simulations of tablet coating using GPU based DEM: a validation study, Chem. Eng. Sci., 202, 462, 10.1016/j.ces.2019.03.029 Chu, 2016, Applicability of a coarse-grained CFD–DEM model on dense medium cyclone, Miner. Eng., 90, 43, 10.1016/j.mineng.2016.01.020 Zheng, 2014, Why have continuum theories previously failed to describe sandpile formation?, Phys. Rev. Lett., 113, 068001, 10.1103/PhysRevLett.113.068001 Hou, 2019, How to generate valid local quantities of particle-fluid flows for establishing constitutive relations, AIChE J., 10.1002/aic.16690 Zhu, 2007, Discrete particle simulation of particulate systems: theoretical developments, Chem. Eng. Sci., 62, 3378, 10.1016/j.ces.2006.12.089 Lu, 2015, Discrete element models for non-spherical particle systems: from theoretical developments to applications, Chem. Eng. Sci., 127, 425, 10.1016/j.ces.2014.11.050 Johnson, 1985 Feng, 2012, Energy-conserving contact interaction models for arbitrarily shaped discrete elements, Comput. Methods Appl. Mech. Eng., 205–208, 169, 10.1016/j.cma.2011.02.010 Feng, 2017, A generic contact detection framework for cylindrical particles in discrete element modelling, Comput. Methods Appl. Mech. Eng., 315, 632, 10.1016/j.cma.2016.11.001 Dong, 2015, A novel method based on orientation discretization for discrete element modeling of non-spherical particles, Chem. Eng. Sci., 126, 500, 10.1016/j.ces.2014.12.059 Favier, 1999, Shape representation of axi-symmetrical, non-spherical particles in discrete element simulation using multi-element model particles, Eng. Comput., 16, 467, 10.1108/02644409910271894 Vu-Quoc, 2000, A 3-D discrete-element method for dry granular flows of ellipsoidal particles, Comput. Methods Appl. Mech. Eng., 187, 483, 10.1016/S0045-7825(99)00337-0 Kodam, 2010, Cylindrical object contact detection for use in discrete element method simulations. Part I – contact detection algorithms, Chem. Eng. Sci., 65, 5852, 10.1016/j.ces.2010.08.006 Vorobiev, 2012, Simple common plane contact algorithm, Int. J. Numer. Methods Eng., 90, 243, 10.1002/nme.3324 Nezami, 2004, A fast contact detection algorithm for 3-D discrete element method, Comput. Geotech., 31, 575, 10.1016/j.compgeo.2004.08.002 Wachs, 2012, Grains3D, A flexible DEM approach for particles of arbitrary convex shape — Part I: numerical model and validations, Powder Technol., 224, 374, 10.1016/j.powtec.2012.03.023 Lin, 1995, Contact detection algorithms for three-dimensional ellipsoids in discrete element modelling, Int. J. Numer. Anal. Methods Geomech., 19, 653, 10.1002/nag.1610190905 Zhou, 2011, Dynamic simulation of the packing of ellipsoidal particles, Ind. Eng. Chem. Res., 50, 9787, 10.1021/ie200862n Podlozhnyuk, 2017, Efficient implementation of superquadric particles in Discrete Element Method within an open-source framework, Comput. Part. Mech., 4, 101, 10.1007/s40571-016-0131-6 Houlsby, 2009, Potential particles: a method for modelling non-circular particles in DEM, Comput. Geotech., 36, 953, 10.1016/j.compgeo.2009.03.001 Boon, 2012 Cleary, 1997, Efficient collision detection for three dimensional super-ellipsoidal particles Wellmann, 2008, A contact detection algorithm for superellipsoids based on the common-normal concept, Eng. Comput., 25, 432, 10.1108/02644400810881374 Kildashti, 2018, A revisit of common normal method for discrete modelling of non-spherical particles, Powder Technol., 326, 1, 10.1016/j.powtec.2017.11.066 Cleary, 2000, DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills, Powder Technol., 109, 83, 10.1016/S0032-5910(99)00229-6 Jiang, 2011, Self-assembly of particles: some thoughts and comments, J. Mater. Chem., 21, 16797, 10.1039/c1jm12213d Wu, 2016, The structure and dynamics of higher-order assemblies: amyloids, signalosomes, and granules, Cell, 165, 1055, 10.1016/j.cell.2016.05.004 Kildashti, 2019, Explicit force model for discrete modelling of elliptical particles, Comput. Geotech., 110, 122, 10.1016/j.compgeo.2019.02.004 Shen, 2009, Modeling three-dimensional morphological structures using spherical harmonics, Evolution: Int. J. Org. Evol., 63, 1003, 10.1111/j.1558-5646.2008.00557.x Delaney, 2010, The packing properties of superellipsoids, Europhys. Lett., 89, 34002, 10.1209/0295-5075/89/34002 Donev, 2004, Improving the density of jammed disordered packings using ellipsoids, Science, 303, 990, 10.1126/science.1093010 Delaney, 2011, Defining random loose packing for nonspherical grains, Phys. Rev. E, 83, 051305, 10.1103/PhysRevE.83.051305 Wang, 2015, Structural characterization of the packings of granular regular polygons, Phys. Rev. E, 92, 062203, 10.1103/PhysRevE.92.062203 Zhao, 2012, Dense random packings of spherocylinders, Soft Matter, 8, 1003, 10.1039/C1SM06487H Meng, 2016, Maximally dense random packings of spherocylinders, Powder Technol., 292, 176, 10.1016/j.powtec.2016.01.036 Jaklič, 2000, Superquadrics and their geometric properties, 13 Wikipedia Zhao, 2019, A poly-superellipsoid-based approach on particle morphology for DEM modeling of granular media, Int. J. Numer. Anal. Methods Geomech., 43, 2147, 10.1002/nag.2951 Kildashti, 2018, Evaluation of contact force models for discrete modelling of ellipsoidal particles, Chem. Eng. Sci., 177, 1, 10.1016/j.ces.2017.11.004 Dong, 2016, Voronoi analysis of the packings of non-spherical particles, Chem. Eng. Sci., 153, 330, 10.1016/j.ces.2016.07.013 Džiugys, 2001, An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers, Granul. Matter, 3, 231, 10.1007/PL00010918 Guises, 2009, Granular packing: numerical simulation and the characterisation of the effect of particle shape, Granul. Matter, 11, 281, 10.1007/s10035-009-0148-0 Donev, 2004, Unusually dense crystal packings of ellipsoids, Phys. Rev. Lett., 92, 255506, 10.1103/PhysRevLett.92.255506 Zou, 1996, Evaluation of the packing characteristics of mono-sized non-spherical particles, Powder Technol., 88, 71, 10.1016/0032-5910(96)03106-3