Explicit Constructions of Centrally Symmetric $$k$$ -Neighborly Polytopes and Large Strictly Antipodal Sets
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon, N.: Explicit construction of exponential sized families of $$k$$ -independent sets. Discrete Math. 58(2), 191–193 (1986)
Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for $$k$$ -restrictions. ACM Trans. Algorithms 2(2), 153–177 (2006)
Barvinok, A., Novik, I.: A centrally symmetric version of the cyclic polytope. Discrete Comput. Geom 39, 76–99 (2008)
Barvinok, A., Lee, S.J., Novik, I.: Centrally symmetric polytopes with many faces. Isr. J. Math. (2012). doi: 10.1007/s11856-012-0107-z
Barvinok, A., Lee, S.J., Novik, I.: Neighborliness of the symmetric moment curve. Mathematika 59, 223–249 (2013)
Böröczky Jr, K.: Finite packing and covering. Cambridge Tracts in Mathematics, vol. 154. Cambridge University Press, Cambridge (2004)
Danzer, L., Grünbaum, B.: Über zwei Probleme bezüglich konvexer Körper von P. Erdös und von V. L. Klee” (German). Math. Z. 79, 95–99 (1962)
Erdős, P., Füredi, Z.: The greatest angle among $$n$$ points in the $$d$$ -dimensional Euclidean space. In: Berge, C. (ed.) Combinatorial Mathematics (Marseille-Luminy, 1981). North-Holland Mathematics Studies, vol. 75, pp. 275–283. North-Holland, Amsterdam (1983)
Freiman, G., Lipkin, E., Levitin, L.: A polynomial algorithm for constructing families of $$k$$ -independent sets. Discrete Math. 70, 137–147 (1988)
Indyk, P.: Uncertainty principles, extractors, and explicit embeddings of $$l_2$$ into $$l_1$$ . In: STOC’07: Proceedings of the 39th Annual ACM Symposium on Theory of Computing, pp. 615–620. ACM, New York (2007)
Linial, N., Novik, I.: How neighborly can a centrally symmetric polytope be? Discrete Comput. Geom 36, 273–281 (2006)
Makai, E., Jr., Martini, H.: On the number of antipodal or strictly antipodal pairs of points in finite subsets of $${ {R}}^d$$ . In: Gritzmann, P., Sturmfels, B. (eds.) Applied Geometry and Discrete Mathematics. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 4, pp. 457–470. American Mathematical Society, Providence, RI (1991)
Martini, H., Soltan, V.: Antipodality properties of finite sets in Euclidean space. Discrete Math. 290(2–3), 221–228 (2005)
Rudelson, M., Vershynin, R.: Geometric approach to error correcting codes and reconstruction of signals. Int. Math. Res. Notices 64, 4019–4041 (2005)