Explaining prediction models and individual predictions with feature contributions

Knowledge and Information Systems - Tập 41 Số 3 - Trang 647-665 - 2014
Erik Štrumbelj1, Igor Kononenko1
1Faculty of Computer and Information Science, University of Ljubljana, Tržaška 25, 1000 , Ljubljana, Slovenia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Achen CH (1982) Intepreting and Using Regression. Sage Publications, Thousand Oaks

Allahyari H, Lavesson N (2011) User-oriented assessment of classification model understandability. In: Proceedings of the 11th Scandinavian conference on artificial intelligence, SCAI 2011, pp 11–19

Becker B, Kohavi R, Sommerfield D (1997) Visualizing the simple Bayesian classier. KDD workshop on issues in the integration of data mining and data visualization

Bhattacharya S, Xu D, Kumar K (2011) An ANN-based auditor decision support system using Benford’s law. Decis Support Syst 50(3):576–584

Bhattacharyya S, Jha S, Tharakunnel K, Westland JC (2011) Data mining for credit card fraud: a comparative study. Decis Support Syst 50(3):602–613

Blanchard J, Guillet F, Briand H (2007) Interactive visual exploration of association rules with rule-focusing methodology. Knowl Inf Syst 13:43–75

Castro J, Gómez D, Tejada J (2009) Polynomial calculation of the shapley value based on sampling. Comput Oper Res 36(5):1726–1730

De Falco I, Della Cioppa A (2005) An evolutionary approach for automatically extracting intelligible classification rules. Knowl Inf Syst 7:179–201

Frank A, Asuncion A (2011) Uci machine learning repository

Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009) The weka data mining software: an update. SIGKDD Explor Newsl 11(1):10–18

Huang Z, Chen H, Hsu CJ, Chen WH, Wu S (2004) Credit rating analysis with support vector machines and neural networks: a market comparative study. Decis Support Syst 37(4):543–558

Huysmans J, Dejaeger K, Mues C, Vanthienen J, Baesens B (2011) An empirical evaluation of the comprehensibility of decision table, tree and rule based predictive models. Decis Support Syst 51(1):141–154

Jaeckel P (2002) Monte Carlo methods in finance. Wiley, New York

Jakulin A, Možina M, Demšar J, Bratko I, Zupan B (2005) Nomograms for visualizing support vector machines. KDD ’05: 11th ACM SIGKDD, ACM, pp 108–117

Kattan MW, Eastham JA, Stapleton AM, Wheeler TM, Scardino PT (1998) A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 90:766–771

Knuth DE (1998) The art of computer programming, volume 2: seminumerical algorithms. Addison-Wesley, Boston

Kononenko I (1993) Inductive and bayesian learning in medical diagnosis. Appl Artif Intell 7:317–337

Lee S (2010) Using data envelopment analysis and decision trees for efficiency analysis and recommendation of B2C controls. Decis Support Syst 49(4):486–497

Lemaire V, Feraud R, Voisine N (2008) Contact personalization using a score understanding method. In: International joint conference on neural networks (IJCNN)

Lim BY, Dey AK, Avrahami D (2009) Why and why not explanations improve the intelligibility of context-aware intelligent systems. In: Proceedings of the 27th international conference on Human factors in computing systems, CHI ’09, ACM, New York, NY, USA, pp 2119–2128

Lubsen J, Pool J, van der Does E (1978) A practical device for the application of a diagnostic or prognostic function. Methods Inf Med 17:127–129

Melli G (n.d.) The datgen dataset generator. http://www.datasetgenerator.com

Možina M, Demšar J, Kattan M, Zupan B (2004) Nomograms for visualization of naive Bayesian classifier. PKDD 2004, Springer, pp 337–348

Robnik-Šikonja M, Kononenko I (2008) Explaining classifications for individual instances. IEEE TKDE 20:589–600

Shapley LS (1953) A value for n-person games, vol II of Contributions to the theory of games. Princeton University Press, Princeton

Szafron D, Poulin B, Eisner R, Lu P, Greiner R, Wishart D, Fyshe A, Pearcy B, Macdonell C, Anvik J (2006) Visual explanation of evidence in additive classifiers. In: Proceedings of innovative applications of artificial intelligence

Štrumbelj E, Bosnić Z, Zakotnik B, Grašič-Kuhar C, Kononenko I (2010) Explanation and reliability of breast cancer recurrence predictions. Knowl Inf Syst 24(2):305–324

Štrumbelj E, Kononenko I (2010) An efficient explanation of individual classifications using game theory. J Mach Learn Res 11:1–18

Štrumbelj E, Kononenko I (2011) A general method for visualizing and explaining black-box regression models. In: Dobnikar A, Lotric U, Ster B (eds) ICANNGA (2), vol 6594 of Lecture notes in computer science. Springer, Berlin, pp 21–30

Welford BP (1962) Note on a method for calculating corrected sums of squares and products. Technometrics 4(3):419–420