Explaining high flow rate of water in carbon nanotubes via solid–liquid molecular interactions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Blake TD (1990) Slip between a liquid and a solid: D.M. Tolstoi’s (1952) theory reconsidered. Colloids Surf 47:135–145
Celata GP, Cumo M, McPhail S, Zummo G (2006) Characterization of fluid dynamic behaviour and channel wall effects in microtube. Int J Heat Fluid Fl 27(1):135–143. doi: 10.1016/j.ijheatfluidflow.2005.03.012
Du F, Qu L, Xia Z, Feng L, Dai L (2011) Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13):8437–8443. doi: 10.1021/la200995r
Fox HW, Zisman WA (1950) The spreading of liquids on low energy surfaces. Polytetrafluoroethylene. J Colloid Sci 5(6):514
Harkins WD (1952) Physical chemistry of surface films. Reinhold, New York
Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037. doi: 10.1126/science.1126298
Israelachvili J (1991) Intermolecular and surface forces, 2nd edn. Academic Press, San Diego
Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8(2):452–458. doi: 10.1021/nl072385qS1530-6984(07)02385-5
Lauga E, Brenner MP, Stone HA (2005) Microfluidics: the no-slip boundary condition. In: Foss J, Tropea C, Yarin A (eds) Handbook of experimental fluid dynamics. Springer, New York
Majumder M, Corry B (2011) Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem Commun 47(27):7683–7685
Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064):44
Majumder M, Chopra N, Hinds BJ (2011) Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5(5):3867–3877. doi: 10.1021/nn200222g
Martí J, Sala J, Guàrdia E (2010) Molecular dynamics simulations of water confined in graphene nanochannels: from ambient to supercritical environments. J Mol Liq 153(1):72–78. doi: 10.1016/j.molliq.2009.09.015
Mattia D, Gogotsi Y (2008) Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5(3):289–305. doi: 10.1007/s10404-008-0293-5
Mattia D, Bau HH, Gogotsi Y (2006a) Wetting of CVD carbon films by polar and non-polar liquids and implications for carbon nanopipes. Langmuir 22(4):1789–1794
Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006b) Effect of graphitization on the wettability and electrical conductivity of CVD carbon nanotubes and films. J Phys Chem B 110(20):9850–9855
Myers T (2010) Why are slip lengths so large in carbon nanotubes? Microfluid Nanofluid 10(5):1141–1145. doi: 10.1007/s10404-010-0752-7
Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897. doi: http://dx.doi.org/10.1088/0034-4885/68/12/R05
Nicholls W, Borg M, Lockerby D, Reese J (2011) Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluid 12(1–4):257–264. doi: 10.1007/s10404-011-0869-3
Park JH, Aluru NR (2010) Ordering-induced fast diffusion of nanoscale water film on graphene. J Phys Chem C 114(6):2595–2599. doi: 10.1021/jp907512z
Pascal TA, Goddard WA, Jung Y (2011) Entropy and the driving force for the filling of carbon nanotubes with water. Proc Natl Acad Sci 108(29):11794–11798. doi: 10.1073/pnas.1108073108
Qin X, Yuan Q, Zhao Y, Xie S, Liu Z (2011) Measurement of the rate of water translocation through carbon nanotubes. Nano Lett: null–null. doi: 10.1021/nl200843g
Ruckenstein E, Rajora P (1983) On the no-slip boundary condition of hydrodynamics. J Colloid Interface Sci 96(2):488–491. doi: 10.1016/0021-9797(83)90050-4
Sinha S, Rossi MP, Mattia D, Gogotsi Y, Bau HH (2007) Induction and measurement of minute flow rates through nanopipes. Phys Fluids 19(1):013603–013608
Thomas JA, McGaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8(9):2788–2793
Thomas JA, McGaughey AJH (2009) Water flow in carbon nanotubes: transition to subcontinuum transport. Phys Rev Lett 102(18):184502
Thomas JA, McGaughey AJH, Kuter-Arnebeck O (2010) Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. Int J Therm Sci 49(2):281–289
Walther JH, Werder T, Jaffe RL, Koumoutsakos P (2004) Hydrodynamic properties of carbon nanotubes. Phys Rev E 69(6):062201–062204
Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107(6):1345–1352
Whitby M, Cagnon L, Thanou M, Quirke N (2008) Enhanced fluid flow through nanoscale carbon pipes. Nano Lett 8(9):2632–2637. doi: 10.1021/nl080705f
Zettlemoyer AC (1968) Hydrophobic surfaces. J Colloid Interface Sci 28(3/4):343365