Explaining high flow rate of water in carbon nanotubes via solid–liquid molecular interactions

Davide Mattia1, Francesco Calabrò2
1Department of chemical engineering, University of Bath, Bath, BA27AY, UK
2DAEIMI Department, University of Cassino, 03043, Cassino, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Blake TD (1990) Slip between a liquid and a solid: D.M. Tolstoi’s (1952) theory reconsidered. Colloids Surf 47:135–145

Celata GP, Cumo M, McPhail S, Zummo G (2006) Characterization of fluid dynamic behaviour and channel wall effects in microtube. Int J Heat Fluid Fl 27(1):135–143. doi: 10.1016/j.ijheatfluidflow.2005.03.012

Du F, Qu L, Xia Z, Feng L, Dai L (2011) Membranes of vertically aligned superlong carbon nanotubes. Langmuir 27(13):8437–8443. doi: 10.1021/la200995r

Fox HW, Zisman WA (1950) The spreading of liquids on low energy surfaces. Polytetrafluoroethylene. J Colloid Sci 5(6):514

Harkins WD (1952) Physical chemistry of surface films. Reinhold, New York

Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB, Grigoropoulos CP, Noy A, Bakajin O (2006) Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312(5776):1034–1037. doi: 10.1126/science.1126298

Israelachvili J (1991) Intermolecular and surface forces, 2nd edn. Academic Press, San Diego

Joseph S, Aluru NR (2008) Why are carbon nanotubes fast transporters of water? Nano Lett 8(2):452–458. doi: 10.1021/nl072385qS1530-6984(07)02385-5

Lauga E, Brenner MP, Stone HA (2005) Microfluidics: the no-slip boundary condition. In: Foss J, Tropea C, Yarin A (eds) Handbook of experimental fluid dynamics. Springer, New York

Majumder M, Corry B (2011) Anomalous decline of water transport in covalently modified carbon nanotube membranes. Chem Commun 47(27):7683–7685

Majumder M, Chopra N, Andrews R, Hinds BJ (2005) Nanoscale hydrodynamics: enhanced flow in carbon nanotubes. Nature 438(7064):44

Majumder M, Chopra N, Hinds BJ (2011) Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5(5):3867–3877. doi: 10.1021/nn200222g

Martí J, Sala J, Guàrdia E (2010) Molecular dynamics simulations of water confined in graphene nanochannels: from ambient to supercritical environments. J Mol Liq 153(1):72–78. doi: 10.1016/j.molliq.2009.09.015

Mattia D, Gogotsi Y (2008) Review: static and dynamic behavior of liquids inside carbon nanotubes. Microfluid Nanofluid 5(3):289–305. doi: 10.1007/s10404-008-0293-5

Mattia D, Bau HH, Gogotsi Y (2006a) Wetting of CVD carbon films by polar and non-polar liquids and implications for carbon nanopipes. Langmuir 22(4):1789–1794

Mattia D, Rossi MP, Kim BM, Korneva G, Bau HH, Gogotsi Y (2006b) Effect of graphitization on the wettability and electrical conductivity of CVD carbon nanotubes and films. J Phys Chem B 110(20):9850–9855

Myers T (2010) Why are slip lengths so large in carbon nanotubes? Microfluid Nanofluid 10(5):1141–1145. doi: 10.1007/s10404-010-0752-7

Neto C, Evans DR, Bonaccurso E, Butt H-J, Craig VSJ (2005) Boundary slip in Newtonian liquids: a review of experimental studies. Rep Prog Phys 68:2859–2897. doi: http://dx.doi.org/10.1088/0034-4885/68/12/R05

Nicholls W, Borg M, Lockerby D, Reese J (2011) Water transport through (7,7) carbon nanotubes of different lengths using molecular dynamics. Microfluid Nanofluid 12(1–4):257–264. doi: 10.1007/s10404-011-0869-3

Park JH, Aluru NR (2010) Ordering-induced fast diffusion of nanoscale water film on graphene. J Phys Chem C 114(6):2595–2599. doi: 10.1021/jp907512z

Pascal TA, Goddard WA, Jung Y (2011) Entropy and the driving force for the filling of carbon nanotubes with water. Proc Natl Acad Sci 108(29):11794–11798. doi: 10.1073/pnas.1108073108

Qin X, Yuan Q, Zhao Y, Xie S, Liu Z (2011) Measurement of the rate of water translocation through carbon nanotubes. Nano Lett: null–null. doi: 10.1021/nl200843g

Ruckenstein E, Rajora P (1983) On the no-slip boundary condition of hydrodynamics. J Colloid Interface Sci 96(2):488–491. doi: 10.1016/0021-9797(83)90050-4

Sinha S, Rossi MP, Mattia D, Gogotsi Y, Bau HH (2007) Induction and measurement of minute flow rates through nanopipes. Phys Fluids 19(1):013603–013608

Thomas JA, McGaughey AJH (2008) Reassessing fast water transport through carbon nanotubes. Nano Lett 8(9):2788–2793

Thomas JA, McGaughey AJH (2009) Water flow in carbon nanotubes: transition to subcontinuum transport. Phys Rev Lett 102(18):184502

Thomas JA, McGaughey AJH, Kuter-Arnebeck O (2010) Pressure-driven water flow through carbon nanotubes: Insights from molecular dynamics simulation. Int J Therm Sci 49(2):281–289

Walther JH, Werder T, Jaffe RL, Koumoutsakos P (2004) Hydrodynamic properties of carbon nanotubes. Phys Rev E 69(6):062201–062204

Werder T, Walther JH, Jaffe RL, Halicioglu T, Koumoutsakos P (2003) On the water-carbon interaction for use in molecular dynamics simulations of graphite and carbon nanotubes. J Phys Chem B 107(6):1345–1352

Whitby M, Quirke N (2007) Fluid flow in carbon nanotubes and nanopipes. Nat Nano 2:87–94

Whitby M, Cagnon L, Thanou M, Quirke N (2008) Enhanced fluid flow through nanoscale carbon pipes. Nano Lett 8(9):2632–2637. doi: 10.1021/nl080705f

Zettlemoyer AC (1968) Hydrophobic surfaces. J Colloid Interface Sci 28(3/4):343365

Zisman WA (1964) Relation of equilibrium contact angle to liquid and solid constitution. In: Fowkes FM (ed) Contact Angle, Wettability, and Adhesion, vol 43. Advances in Chemistry Series. American Chemical Society, Washington D.C., pp 1–56