Explainable machine learning to uncover hydrogen diffusion mechanism in clinopyroxene
Tài liệu tham khảo
Andrut, 2007, Mechanisms of OH defect incorporation in naturally occurring, hydrothermally formed diopside and jadeite, Phys. Chem. Miner., 34, 543, 10.1007/s00269-007-0169-3
Balan, 2020, Low-temperature infrared spectrum and atomic-scale structure of hydrous defects in diopside, Eur. J. Mineral., 32, 505, 10.5194/ejm-32-505-2020
Cashman, 2017, Vertically extensive and unstable magmatic systems: a unified view of igneous processes, Science, 355, 10.1126/science.aag3055
Chen, 2016, Xgboost: a scalable tree boosting system, 785
Chen, 2017, Heterogeneous source components of intraplate basalts from NE China induced by the ongoing Pacific slab subduction, Earth Planet. Sci. Lett., 459, 208, 10.1016/j.epsl.2016.11.030
Chen, 2020
Chen, 2021, Machine learning for identification of primary water concentrations in mantle pyroxene, Geophys. Res. Lett., 48, 10.1029/2021GL095191
Devos, 2009, Support vector machines (SVM) in near infrared (NIR) spectroscopy: Focus on parameters optimization and model interpretation, Chemom. Intell. Lab. Syst., 96, 27, 10.1016/j.chemolab.2008.11.005
Dramsch, 2020, 70 years of machine learning in geoscience in review, Adv. Geophys., 61, 1, 10.1016/bs.agph.2020.08.002
Ferriss, 2016, Site-specific hydrogen diffusion rates during clinopyroxene dehydration, Contrib. Mineral. Petrol., 171, 1, 10.1007/s00410-016-1262-8
Friedman, 2001, Greedy function approximation: a gradient boosting machine, Ann. Stat., 1189
Hastie, 2009, 2, 1
He, 2022, A review of machine learning in geochemistry and cosmochemistry: Method improvements and applications, Appl. Geochem., 105273, 10.1016/j.apgeochem.2022.105273
Hintze, 1998, Violin plots: a box plot-density trace synergism, Am. Stat., 52, 181
Ingrin, 2006, Diffusion of hydrogen in minerals, Rev. Mineral. Geochem., 62, 291, 10.2138/rmg.2006.62.13
Li, 2023
Li, 2023
Lloyd, 2016, An assessment of clinopyroxene as a recorder of magmatic water and magma ascent rate, J. Petrol., 57, 1865, 10.1093/petrology/egw058
Lundberg, 2017, A unified approach to interpreting model predictions, Adv. Neural Inf. Proces. Syst., 30
Lundberg, 2018
Lundberg, 2020, From local explanations to global understanding with explainable AI for trees, Nat. Machine Intel., 2, 56, 10.1038/s42256-019-0138-9
Morimoto, 1988, Nomenclature of pyroxenes, Mineral. Mag., 52, 535, 10.1180/minmag.1988.052.367.15
Nazzareni, 2020, Magma water content of Pico Volcano (Azores Islands, Portugal): a clinopyroxene perspective, Contrib. Mineral. Petrol., 175, 1, 10.1007/s00410-020-01728-7
Reichstein, 2019, Deep learning and process understanding for data-driven Earth system science, Nature, 566, 195, 10.1038/s41586-019-0912-1
Saha, 2021, Discriminating tectonic setting of igneous rocks using biotite major element chemistry− A machine learning approach, Geochem. Geophys. Geosyst., 22, 10.1029/2021GC010053
Shapley, 1953, A value for n-person games, 307
Skogby, 1989, OH− in pyroxene; an experimental study of incorporation mechanisms and stability, Am. Mineral., 74, 1059
Stalder, 2007, OH incorporation in synthetic diopside, Eur. J. Mineral., 19, 373, 10.1127/0935-1221/2007/0019-1721
Sundvall, 2009, Dehydration-hydration mechanisms in synthetic Fe-poor diopside, Eur. J. Mineral., 21, 17, 10.1127/0935-1221/2009/0021-1880
Troyanskaya, 2001, Missing value estimation methods for DNA microarrays, Bioinformatics, 17, 520, 10.1093/bioinformatics/17.6.520
Wade, 2008, Prediction of magmatic water contents via measurement of H2O in clinopyroxene phenocrysts, Geology, 36, 799, 10.1130/G24964A.1
Wang, 2021, Highly variable H2O/Ce ratios in the Hainan mantle plume, Lithos, 406, 106516, 10.1016/j.lithos.2021.106516
Weis, 2015, Magmatic water contents determined through clinopyroxene: examples from the W estern C anary I slands, S pain, Geochem. Geophys. Geosyst., 16, 2127, 10.1002/2015GC005800
Wilkinson, 1999, Statistical methods in psychology journals: guidelines and explanations, Am. Psychol., 54, 594, 10.1037/0003-066X.54.8.594
Xia, 2013, The distribution of water in the continental lithospheric mantle and its implications for the stability of continents, Chin. Sci. Bull., 58, 3879, 10.1007/s11434-013-5949-1
Yang, 2019, Nature of hydrogen defects in clinopyroxenes from room temperature up to 1000 C: Implication for the preservation of hydrogen in the upper mantle and impact on electrical conductivity, Am. Mineral., 104, 79, 10.2138/am-2019-6661
Zhao, 2019, Involvement of slab-derived fluid in the generation of Cenozoic basalts in Northeast China inferred from machine learning, Geophys. Res. Lett., 46, 5234, 10.1029/2019GL082322