Experiments inside a box lead to out-of-the-box ideas on cellular organization

Springer Science and Business Media LLC - Tập 8 - Trang 223-226 - 2014
Liedewij Laan1
1FAS Center for Systems Biology, Harvard University, Cambridge, USA

Tóm tắt

Microtubules are biopolymers that assemble from tubulin dimers into hollow tubes and play an important role in cellular organization. Their fascinating properties and variety of functions, like for example chromosome segregation, sperm propagation and polarity establishment, have made them a popular subject of study. In this perspective I focus on the contribution of minimal in vitro systems to our understanding of microtubule organization within the physical confinement of a cell.

Tài liệu tham khảo

Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L et al (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105 Bieling P, Telley IA, Surrey T (2010) A minimal midzone protein module controls formation and length of antiparallel microtubule overlaps. Cell 142:420–432 Braun M, Lansky Z, Fink G, Ruhnow F, Diez S et al (2011) Adaptive braking by Ase1 prevents overlapping microtubules from sliding completely apart. Nat Cell Biol 13:1259–1264 Brouhard GJ, Stear JH, Noetzel TL, Al-Bassam J, Kinoshita K et al (2008) XMAP215 is a processive microtubule polymerase. Cell 132:79–88 Cosentino Lagomarsino M, Tanase C, Vos JW, Emons AM, Mulder BM et al (2007) Microtubule organization in three-dimensional confined geometries: evaluating the role of elasticity through a combined in vitro and modeling approach. Biophys J 92:1046–1057 Elbaum M, Kuchnir Fygenson D, Libchaber A (1996) Buckling microtubules in vesicles. Phys Rev Lett 76:4078–4081 Faivre-Moskalenko C, Dogterom M (2002) Dynamics of microtubule asters in microfabricated chambers: the role of catastrophes. Proc Natl Acad Sci USA 99:16788–16793 Gennerich A, Carter AP, Reck-Peterson SL, Vale RD (2007) Force-induced bidirectional stepping of cytoplasmic dynein. Cell 131:952–965 Good MC, Vahey MD, Skandarajah A, Fletcher DA, Heald R (2013) Cytoplasmic volume modulates spindle size during embryogenesis. Science 342:856–860 Grill SW, Gonczy P, Stelzer EHK, Hyman AA (2001) Polarity controls forces governing asymmetric spindle positioning in the Caenorhabditis elegans embryo. Nature 409:630–633 Hazel J, Krutkramelis K, Mooney P, Tomschik M, Gerow K et al (2013) Changes in cytoplasmic volume are sufficient to drive spindle scaling. Science 342:853–856 Holy TE, Dogterom M, Yurke B, Leibler S (1997) Assembly and positioning of microtubule asters in microfabricated chambers. Proc Natl Acad Sci USA 94:6228–6231 Horio T, Hotani H (1986) Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–607 Kerssemakers JWJ, Munteanu EL, Laan L, Noetzel TL, Janson ME et al (2006) Assembly dynamics of microtubules at molecular resolution. Nature 442:709–712 Kinoshita K, Arnal I, Desai A, Drechsel DN, Hyman AA (2001) Reconstitution of physiological microtubule dynamics using purified components. Science 294:1340–1343 Laan L, Pavin N, Husson J, Romet-Lemonne G, van Duijn M et al (2012a) Cortical dynein controls microtubule dynamics to generate pulling forces that position microtubule asters. Cell 148:502–514 Laan L, Roth S, Dogterom M (2012) End-on microtubule-dynein interactions and pulling-based positioning of microtubule organizing centers. Cell Cycle 11:3750–3757 Minc N, Burgess D, Chang F (2011) Influence of cell geometry on division-plane positioning. Cell 144:414–426 Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242 Mulder B, Janson M (2014) Microtubule networks for Plant Cell Division. Sys Synth Biol. doi:10.1007/s11693-014-9142-x Nedelec FJ, Surrey T, Maggs AC, Leibler S (1997) Self-organization of microtubules and motors. Nature 389:305–308 Pavin N, Laan L, Ma R, Dogterom M, Julicher F (2012) Positioning of microtubule organizing centers by cortical pushing and pulling forces. New J Phys. doi:10.1088/1367-2630/14/10/105025 Picone R, Ren X, Ivanovitch KD, Clarke JD, McKendry RA et al (2010) A polarised population of dynamic microtubules mediates homeostatic length control in animal cells. PLoS Biol 8:e1000542 Pinot M, Chesnel F, Kubiak JZ, Arnal I, Nedelec FJ et al (2009) Effects of confinement on the self-organization of microtubules and motors. Curr Biol 19:954–960 Reck-Peterson SL, Yildiz A, Carter AP, Gennerich A, Zhang N et al (2006) Single-molecule analysis of dynein processivity and stepping behavior. Cell 126:335–348 Romet-Lemonne G, VanDuijn M, Dogterom M (2005) Three-dimensional control of protein patterning in microfabricated devices. Nano Lett 5:2350–2354 Terenna CR, Makushok T, Velve-Casquillas G, Baigl D, Chen Y et al (2008) Physical mechanisms redirecting cell polarity and cell shape in fission yeast. Curr Biol 18:1748–1753 Tran PT, Marsh L, Doye V, Inoue S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing (vol 153, pg 397, 2001). J Cell Biol 153:891 Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA et al (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448 Weisenberg RC (1972) Microtubule formation in vitro in solutions containing low calcium concentrations. Science 177:1104–1105