Experimentally Derived Sedimentary, Molecular, and Isotopic Characteristics of Bone-Fueled Hearths

Journal of Archaeological Method and Theory - Tập 26 - Trang 1327-1375 - 2019
Tammy Buonasera1,2, Antonio V. Herrera-Herrera1, Carolina Mallol1
1Archaeological Micromorphology and Biomarkers (AMBI Lab), Instituto Universitario de Bio-Orgánica Antonio González, La Laguna, Spain
2Department of Anthropology, University of California, Davis, USA

Tóm tắt

Molecular and isotopic analysis of sediments from archaeological combustion features is a relatively new area of study. Applications can inform us about ancient pyro-technologies and patterns of animal exploitation in a wide range of human contexts, but may be particularly informative with regard to ancient hunter-gatherers. Our analyses of sediments from experimental bone and wood fires, and from controlled laboratory heating sequences, provide fine-grained data on the formation and location of biomarkers from pyrolyzed animal fats in hearths. Integrating microstratigraphic, molecular, and isotopic data can improve recognition of bone fires in archaeological contexts, perhaps even where bone preservation is poor. Experimental bone fires produced an upper layer of calcined bone above a thin layer of tarry black amorphous material coating mineral sediments. Mineral sediments beneath the black layer showed little alteration but high lipid content. Sampling for molecular and isotopic analysis should target the black layer as the bulk of pyrolyzed biomarkers are located here and stable isotope values are less affected than in the overlying layer of ash or calcined bone. The combined presence of certain symmetric and slightly asymmetric saturated long-chain ketones (14-nonacosanone, 16-hentriacontanone 16-tritriacontanone, and 18-pentatriacontanone), especially together with heptadecane (C17n-alkane), are molecular indicators of the thermal degradation of terrestrial animal fat. Formation and relative dominance of these molecules in hearth sediments relates to the initial prevalence of specific precursor fatty acids and can provide broad separations between sources. We suggest that separations could be further supported and expanded by combining stable isotope analysis of the same compounds.

Tài liệu tham khảo

Aldeias, V., Dibble, H. L., Sandgathe, D., Goldberg, P., & McPherron, S. J. P. (2016). How heat alters underlying deposits and implications for archaeological fire features: A controlled experiment. Journal of Archaeological Science, 67, 64–79. Alencar, J. W., Alves, P. B., & Craveiro, A. A. (1983). Pyrolysis of tropical vegetable oils. Journal of Agricultural and Food Chemistry, 31(6), 1268–1270. Alix, C., & Mason, O. (2018). Birnirk prehistory and the emergence of Inupiaq culture in northwestern Alaska: Archaeological and anthropological perspectives. Field Investigations at Cape Espenberg, 2017. Annual Report to the National Park Service U.S. Department of the Interior. Anderson, A. B. (1958). The composition and structure of wood. Journal of Chemical Education, 35(10), 487. Anderson, S. L., Tushingham, S., & Buonasera, T. Y. (2017). Aquatic adaptations and the adoption of arctic pottery technology: Results of residue analysis. American Antiquity, 82(3), 452–479. Ayllón, M., Aznar, M., Sánchez, J. L., Gea, G., & Arauzo, J. (2006). Influence of temperature and heating rate on the fixed bed pyrolysis of meat and bone meal. Chemical Engineering Journal, 121(2), 85–96. Baeten, J., Jervis, B., De Vos, D., & Waelkens, M. (2013). Molecular evidence for the mixing of meat, fish and vegetables in Anglo-Saxon coarseware from Hamwic, UK. Archaeometry, 55(6), 1150–1174. Ben Hassen-Trabelsi, A., Kraiem, T., Naoui, S., & Belayouni, H. (2014). Pyrolysis of waste animal fats in a fixed-bed reactor: Production and characterization of bio-oil and bio-char. Waste Management, 34(1), 210–218. Berna, F., & Goldberg, P. (2007). Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Israel Journal of Earth Sciences, 56(2), 107–121. Boskey, A. L. (2013). Bone composition: Relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Reports, 2(447), 1–11. Buonasera, T. Y., Tremayne, A. H., Darwent, C. M., Eerkens, J. W., & Mason, O. K. (2015). Lipid biomarkers and compound specific δ13C analysis indicate early development of a dual-economic system for the Arctic Small Tool tradition in northern Alaska. Journal of Archaeological Science, 61, 129–138. Burch, E. S. (1972). The caribou/wild reindeer as a human resource. American Antiquity, 37(3), 339–368. Busse, M. D., Shestak, C. J., Hubbert, K. R., Knapp, E. E. (2010). Soil physical properties regulate lethal heating during burning of woody residues. Soil Science Society of America Journal, 74(3), 947–955. https://doi.org/10.2136/sssaj2009.0322. Cappa, C. D., Hendricks, M. B., DePaolo, D. J., & Cohen, R. C. (2003). Isotopic fractionation of water during evaporation. Journal of Geophysical Research, 108(D16), 4525. Chaiwong, K., Kiatsiriroat, T., Vorayos, N., & Thararax, C. (2013). Study of bio-oil and bio-char production from algae by slow pyrolysis. Biomass and Bioenergy, 56, 600–606. Chang, C. C., & Wan, S. W. (1947). China’s motor fuels from tung oil. Industrial and Engineering Chemistry, 39(12), 1543–1548. Choy, K., Potter, B. A., McKinney, H. J., Reuther, J. D., Wang, S. W., & Wooller, M. J. (2016). Chemical profiling of ancient hearths reveals recurrent salmon use in Ice Age Beringia. Proceedings of the National Academy of Sciences of the United States of America, 113(35), 9757–9762. Church, R. R., & Lyman, R. L. (2003). Small fragments make small differences in efficiency when rendering grease from fractured artiodactyl bones by boiling. Journal of Archaeological Science, 30(8), 1077–1084. Copley, M. S., Hansel, F. A., Sadr, K., & Evershed, R. P. (2004). Organic residue evidence for the processing of marine animal products in pottery vessels from the pre-colonial archaeological site of Kasteelberg D east, South Africa. South African Journal of Science, 100(5–6), 279–283. Costamagno, S. (2013). Bone grease rendering in Mousterian contexts: The case of Noisetier Cave (Fréchet-Aure, Hautes-Pyrénées, France). In J. L. Clark & J. D. Speth (Eds.), Zooarchaeology and modern human origins (pp. 209–225). Dordrecht: Springer. Costamagno, S., & Théry-Parisot, I. (2002). Taphonomic consequences of the use of bones as fuel: Experimental data and archaeological applications. In P. Rowley-Conwy, U. Albarella, & K. Dobney (Eds.), Proceedings of the 9th Conference of the International Council of Archaeozoology, Durham (pp. 51-62). Courty, M.-A., Goldberg, P., & Macphail, R. (1990). Soils and micromorphology in archaeology. Cambridge: Cambridge University Press. Cranwell, P. A. (1981). Diagenesis of free and bound lipids in terrestrial detritus deposited in a lacustrine sediment. Organic Geochemistry, 3(3), 79–89. Crass, B. A., Kedrowski, B. L., Baus, J., & Behm, J. A. (2011). Residue analysis of bone-fueled Pleistocene hearths. In T. Gobel & I. Buvit (Eds.), From the Yenesei to the Yukon: Interpreting lithic assemblage variability in Late Pleistocene/Early Holocene Beringia (pp. 192–198). College Station: Texas A & M University Press. Darwent, C. M. (2001). High Arctic Paleoeskimo fauna: Temporal changes and regional differences (Canada, Greenland) (Ph.D. dissertation). Department of Anthropology, University of Missouri-Columbia. DeNiro, M. J., & Epstein, S. (1977). Mechanism of carbon isotope fractionation associated with lipid synthesis. Science, 197(4300), 261–263. Dinel, H., Schnitzer, M., & Mehuys, G. R. (1990). Soil lipids: Origin, nature, content, decomposition, and effect on soil physical properties. In J. Bollag & G. Stotzky (Eds.), Soil biochemistry (Vol. 6, pp. 397–429). New York: Marcel Dekker, Inc.. Eckmeier, E., & Wiesenberg, G. L. B. (2009). Short-chain n-alkanes (C16–20) in ancient soil are useful molecular markers for prehistoric biomass burning. Journal of Archaeological Science, 36(7), 1590–1596. Eglinton, G., & Hamilton, R. J. (1967). Leaf epicuticular waxes. Science, 156(3780), 1322–1335. Evershed, R. P., Stott, A. W., Raven, A., Dudd, S. N., Charters, S., & Leyden, A. (1995). Formation of long-chain ketones in ancient pottery vessels by pyrolysis of acyl lipids. Tetrahedron Letters, 36(48), 8875–8878. Evershed, R. P., Dudd, S. N., Copley, M. S., Berstan, R., Stott, A. W., & Mottram, H. (2002a). Chemistry of archaeological animal fats. Accounts of Chemical Research, 35(8), 660–668. Evershed, R. P., Dudd, S. N., Copley, M. S., & Mutherjee, A. (2002b). Identification of animal fats via compound specific δ13C values of individual fatty acids: Assessments of results for reference fats and lipid extracts of archaeological pottery vessels. Documenta Praehistorica, 29, 73–96. Evershed, R. P., Copley, M. S., Dickson, L., & Hansel, F. A. (2008). Experimental evidence for the processing of marine animal products and other commodities containing polyunsaturated fatty acids in pottery vessels. Archaeometry, 50(1), 101–113. Forney, F. W., & Markovetz, A. J. (1971). The biology of methyl ketones. Journal of Lipid Research, 12(4), 383–395. Frink, L., & Giordano, C. (2015). Women and subsistence food technology: The Arctic seal poke storage system. Food and Foodways, 23(4), 251–272. García-Piquer, A., Lozano, J.-M., March, R. J., & Estévez-Escalera, J. (2018). An experimental ethnoarchaeology and analytical approach to fire-related management strategies in a hunter-fisher-gatherer society from the southern tip of Tierra del Fuego (Argentina). Ethnoarchaeology (pp. 1–20). Goldberg, P., Miller, C. E., Schiegl, S., Ligouis, B., Berna, F., Conard, N. J., & Wadley, L. (2009). Bedding, hearths, and site maintenance in the Middle Stone age of Sibudu cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences, 1(2), 95–122. Halffman, C. M., Potter, B. A., McKinney, H. J., Finney, B. P., Rodrigues, A. T., Yang, D. Y., & Kemp, B. M. (2015). Early human use of anadromous salmon in North America at 11,500 y ago. Proceedings of the National Academy of Sciences of the United States of America, 112(40), 12344–12348. Hansel, F. A., & Evershed, R. P. (2009). Formation of dihydroxy acids from Z-monounsaturated alkenoic acids and their use as biomarkers for the processing of marine commodities in archaeological pottery vessels. Tetrahedron Letters, 50(40), 5562–5564. Hansel, F. A., Copley, M. S., Madureira, L. A. S., & Evershed, R. P. (2004). Thermally produced ω-(o-alkylphenyl) alkanoic acids provide evidence for the processing of marine products in archaeological pottery vessels. Tetrahedron Letters, 45(14), 2999–3002. Heron, C., & Evershed, R. P. (1993). The analysis of organic residues and the study of pottery use. Archaeological Method and Theory, 5, 247–284. Heron, C., Nilsen, G., Stern, B., Craig, O., & Nordby, C. (2010). Application of lipid biomarker analysis to evaluate the function of “slab-lined pits” in Arctic Norway. Journal of Archaeological Science, 37(9), 2188–2197. Herrera-Herrera, A. V., & Mallol, C. (2018). Quantification of lipid biomarkers in sedimentary contexts: Comparing different calibration methods. Organic Geochemistry, 125, 152–160. Hoefs, J. (2013). Stable isotope geochemistry (7th ed.). New York: Springer. Holmes, C. E. (2001). Tanana River Valley archaeology circa 14,000 to 9000 B.P. Arctic Anthropology, 38(2), 154–170. https://doi.org/10.1016/j.orggeochem.2018.07.009. Jambrina-Enríquez, M., Herrera-Herrera, A. V., & Mallol, C. (2018). Wax lipids in fresh and charred anatomical parts of the Celtis australis tree: Insights on paleofire interpretation. Organic Geochemistry, 122, 147–160. Jones, K. T., & Metcalfe, D. (1988). Bare bones archaeology: Bone marrow indices and efficiency. Journal of Archaeological Science, 15(4), 415–423. Karr, L. P., Outram, A. K., & Adrien Hannus, L. (2010). A chronology of bone marrow and bone grease exploitation at the Mitchell Prehistoric Indian Village. Plains Anthropologist, 55(215), 215–223. Kedrowski, B. L., Crass, B. A., Behm, J. A., Luetke, J. C., Nichols, A. L., Moreck, A. M., & Holmes, C. E. (2009). GC/MS analysis of fatty acids from ancient hearth residues at the Swan Point archaeological site. Archaeometry, 51(1), 110–122. Kent, S. (1993). Variability in faunal assemblages: The influence of hunting skill, sharing, dogs, and mode of cooking on faunal remains in a sedentary Kalahari community. Journal of Anthropological Archaeology, 12(4), 323–385. Kim, S. W., Koo, B. S., & Lee, D. H. (2014). A comparative study of bio-oils from pyrolysis of microalgae and oil seed waste in a fluidized bed. Bioresource Technology, 162, 96–102. Kolattukudy, P. E., Croteau, R., & Buckner, J. S. (1976). Biochemistry of plant waxes. In P. E. Kolattukudy (Ed.), Chemistry and biochemistry of natural waxes (pp. 289–347). New York: Elsevier. Leechman, D. (1951). Bone grease. American Antiquity, 16(4), 355–356. Lejay, M., Alexis, M., Quénéa, K., Sellami, F., & Bon, F. (2016). Organic signatures of fireplaces: Experimental references for archaeological interpretations. Organic Geochemistry, 99, 67–77. Logan, J. M., Jardine, T. D., Miller, T. J., Bunn, S. E., Cunjak, R. A., & Lutcavage, M. E. (2008). Lipid corrections in carbon and nitrogen stable isotope analyses: Comparison of chemical extraction and modelling methods. The Journal of Animal Ecology, 77(4), 838–846. Lucquin, A. (2007). Étude physico-chimique des méthodes de cuisson pré et protohistoriques. (Ph.D. dissertation). Université Rennes 1, France. Lucquin, A. (2016). Untangling complex organic mixture in prehistoric hearths. Proceedings of the National Academy of Sciences of the United States of America, 113(38), 10456–10457. Lupo, K., & Schmidt, D. N. (1997). Experiments in bone boiling: Nutritional returns and archaeological reflections. Anthropozoologica, 95-96, 138–144. Ma, F., & Hanna, M. A. (1999). Biodiesel production: A review. Bioresource Technology, 70, 1–15. Maher, K. D., & Bressler, D. C. (2007). Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 98(12), 2351–2368. Maher, K. D., Kirkwood, K. M., Gray, M. R., & Bressler, D. C. (2008). Pyrolytic decarboxylation and cracking of stearic acid. Industrial & Engineering Chemistry Research, 47(15), 5328–5336. Mallol, C., & Henry, A. (2017). Ethnoarchaeology of Paleolithic fire: Methodological considerations. Current Anthropology, 58, S16. https://doi.org/10.1086/691422. Mallol, C., Hernández, C. M., Cabanes, D., Machado, J., Sistiaga, A., Pérez, L., & Galván, B. (2013). Human actions performed on simple combustion structures: An experimental approach to the study of Middle Palaeolithic fire. Quaternary International: The Journal of the International Union for Quaternary Research, 315, 3–15. Manne, T. (2010). Upper Paleolithic foraging decisions and early economic intensification at Vale Boi, Southwestern Portugal. (Ph.D. dissertation) Department of Anthropology, University of Arizona. https://arizona.openrepository.com/handle/10150/204309. Accessed 7 Apr 2017 Manne, T. (2014). Early Upper Paleolithic bone processing and insights into small-scale storage of fats at Vale Boi, southern Iberia. Journal of Archaeological Science, 43, 111–123. March, R. J. (1999). Chimie organique appliquée à l'étude des structures de combustion du site de Tunel I (Terre de Feu, Argentine). Revue d'archéométrie, 23, 127–156. March, R. J. (2013). Searching for the functions of fire structures in Eynan (Mallaha) and their formation processes: A geochemical approach. In O. Bar-Yosef & F. R. Valla (Eds.), Natufian foragers in the Levant: Terminal Pleistocene social changes in Western Asia (Vol. 19, pp. 227–283). Ann Arbor: International Monographs in Prehistory. March, R. J., & Lucquin, A. (2006). About cooking and firing: Chemical analysis of fat residues from experimental and archaeological data. XIVe Congrès UISPP, Liège 3–8 Septembre 2001 Section 1. Colloque The Signifiance of Experimentation for the Interpretation of the Archaeological Processes: Methods, Problems and Projects, Maria Rosa Iorvino-BAR, 30 p. March, R. J., Baldessari, A., & Gross, E. G. (1989). Determinacion de compuestos orgánicos en estructuras de combustión arqueológicas. In M. Olive & Y. Taborin (Eds.), Nature et Fonction des foyers préhistoriques, Actes du colloque international de Nemours (1987) (pp. 47–58). Nemours: APRAIF. March, R. J., Lucquin, A., Joly, D., Ferreri, J. C., & Muhieddine, M. (2014). Processes of formation and alteration of archaeological fire structures: Complexity viewed in the light of experimental approaches. Journal of Archaeological Method and Theory, 21(1), 1–45. McCullough, D. R., & Ullrey, D. E. (1983). Proximate mineral and gross energy composition of white-tailed deer. The Journal of Wildlife Management, 47(2), 430–441. McMurry, J. (1992). Organic chemistry (3rd ed.). Pacific Grove: Brooks/Cole. Mentzer, S. M. (2009) Bone as a fuel source: The effects of initial fragment size distribution. In E. Cappellini, A. Prohaska, F. Racimo, F. Welker, M. W. Pedersen, M. E. Allentoft, et al. (2018). Ancient Biomolecules and Evolutionary Inference. Annual review of biochemistry, 87, 1029–1060. Costamagno, S., Théry-Parisot, I., Henry, A. (Eds.), Gestion des combustibles au Paléolithique et au Mésolithique: nouveaux outils, nouvelles interpretations (pp. 53-64). BAR International Series 1914. Archaeopress, Oxford. Mentzer, S. M. (2014). Microarchaeological approaches to the identification and interpretation of combustion features in prehistoric archaeological sites. Journal of Archaeological Method and Theory, 21(3), 616–668. Moucawi, J., Fustec, E., Jambu, P., & Jacquesy, R. (1981). Decomposition of lipids in soils: Free and esterified fatty acids, alcohols and ketones. Soil Biology & Biochemistry, 13(6), 461–468. Munro, N. D., & Bar-Oz, G. (2005). Gazelle bone fat processing in the Levantine Epipalaeolithic. Journal of Archaeological Science, 32(2), 223–239. Munro, L. E., Longstaffe, F. J., & White, C. D. (2007). Burning and boiling of modern deer bone: Effects on crystallinity and oxygen isotope composition of bioapatite phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 249, 90–102. Nawar, W. W. (1969). Thermal degradation of lipids. Journal of Agricultural and Food Chemistry, 17(1), 18–21. O’Connell, J. F., Hawkes, K., & Jones, N. B. (1988). Hadza hunting, butchering, and bone transport and their archaeological implications. Journal of Anthropological Research, 44(2), 113–161. Odgaard, U. (2003). Hearth and home of the Palaeo-Eskimos. Études/Inuit/Studies, 27(1–2), 349–374. Outram, A. K. (1999). A comparison of paleo-eskimo and medieval Norse bone fat exploitation in western Greenland. Arctic Anthropology, 36(1/2), 103–117. Outram, A. K. (2001). A new approach to identifying bone marrow and grease exploitation: Why the “indeterminate” fragments should not be ignored. Journal of Archaeological Science, 28(4), 401–410. Outram, A. K. (2002). Identifying dietary stress in marginal environments: Bone fats, optimal foraging theory and the seasonal round. In M. Mondini, S Muiioz & S Wickler (Eds.). Colonization, migration, and marginal areas: A zooarchaeological approach (pp. 71–85). Proceedings of the 9th ICAZ Conference, Durham 2002. Passi, S., Picardo, M., De Luca, C., Nazzaro-Porro, M., Rossi, L., & Rotilio, G. (1993). Saturated dicarboxylic acids as products of unsaturated fatty acid oxidation. Biochimica et Biophysica Acta, 1168(2), 190–198. Pavao-Zuckerman, B. (2011). Rendering economies: Native American labor and secondary animal products in the eighteenth-century Pimería Alta. American Antiquity, 76(1), 3–23. Pettersen, R. C. (1984). The chemical composition of wood. In The chemistry of solid wood (Vol. 207, pp. 57–126). Washington: American Chemical Society. Pham, T. N., Sooknoi, T., Crossley, S. P., & Resasco, D. E. (2013). Ketonization of carboxylic acids: Mechanisms, catalysts, and implications for biomass conversion. ACS Catalysis, 3(11), 2456–2473. Poole, I., Braadbaart, F., Boon, J. J., & van Bergen, P. F. (2002). Stable carbon isotope changes during artificial charring of propagules. Organic Geochemistry, 33(12), 1675–1681. Prost, D., Langevin, O., Lucquin, A., March, R. J., Verdin, P., & D., A. la C. de L. (2011). Le site Néolithique récent-final de “La Garenne” à Gaillon (Eure) et ses structures de combustion. Revue archéologique de Picardie, numéros spéciaux, 28, 221–248. Quigg, J. M. (1997). Bison processing at the rush site, 41TG346, and evidence for pemmican production in the southern plains. Plains Anthropologist, 42(159), 145–161. Rasmussen, K. (1931). The Netsilik Eskimos: Social life and spiritual culture. Report of the Fifth Thule Expedition, 1921-24, Vol. VIII, No. 1-2., Gyldendalske Boghandel, Copenhagen. Raven, A. M., van Bergen, P. F., Stott, A. W., Dudd, S. N., & Evershed, R. P. (1997). Formation of long-chain ketones in archaeological pottery vessels by pyrolysis of acyl lipids. Journal of Analytical and Applied Pyrolysis, 40-41, 267–285. Regert, M. (2011). Analytical strategies for discriminating archeological fatty substances from animal origin. Mass Spectrometry Reviews, 30(2), 177–220. Reidsma, F. H., van Hoesel, A., van Os, B. J. H., Megens, L., & Braadbaart, F. (2016). Charred bone: Physical and chemical changes during laboratory simulated heating under reducing conditions and its relevance for the study of fire use in archaeology. Journal of Archaeological Science: Reports, 10, 282–292. Renz, M. (2005). Ketonization of carboxylic acids by decarboxylation: Mechanism and scope. European Journal of Organic Chemistry, 2005(6), 979–988. Rottländer, R. C. A. (1989). Chemische untersuchungen an sedimenten der Höhle Geissenklösterle bei Blaubeuren. Fundberichte Aus Baden-Württemberg, 14, 23–32. Rottländer, R. C. A. (1991). Die resultate der modernen Fettanalytik und ihre Anwendung auf die prähistorische Forschung. Archaeo-Physika, 12, 1–354. Ryan, C., McHugh, B., Trueman, C. N., Harrod, C., Berrow, S. D., & O’Connor, I. (2012). Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid communications in mass spectrometry: RCM, 26(23), 2745–2754. Saranpää, P., & Nyberg, H. (1987). Lipids and sterols of Pinus sylvestris L. sapwood and heartwood. Trees, 1(2), 82–87. Schiegl, S., Goldberg, P., Pfretzschner, H.-U., & Conard, N. J. (2003). Paleolithic burnt bone horizons from the Swabian Jura: Distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18(5), 541–565. Schirmer, A., Rude, M. A., Li, X., Popova, E., & del Cardayre, S. B. (2010). Microbial biosynthesis of alkanes. Science, 329(5991), 559–562. Schwab, A. W., Dykstra, G. J., Selke, E., Sorenson, S. C., & Pryde, E. H. (1988). Diesel fuel from thermal decomposition of soybean oil. Journal of the American Oil Chemists’ Society, 65(11), 1781–1786. Shahidi, F. (2005). Bailey’s industrial oil and fat products (Vol. 6). New York: Wiley-Interscience. Simoneit, B. R. T. (2002). Biomass burning—A review of organic tracers for smoke from incomplete combustion. Applied Geochemistry: Journal of the International Association of Geochemistry and Cosmochemistry, 17(3), 129–162. Sistiaga, A., Mallol, C., Galván, B., & Summons, R. E. (2014). The Neanderthal meal: A new perspective using faecal biomarkers. PLoS One, 9(6), 1–6. Snoeck, C., Lee-Thorp, J. A., & Schulting, R. J. (2014). From bone to ash: Compositional and structural changes in burned modern and archaeological bone. Palaeogeography, palaeoclimatology,palaeoecology, 416, 55–68. Speth, J. D., & Spielmann, K. A. (1983). Energy source, protein metabolism, and hunter-gatherer subsistence strategies. Journal of Anthropological Archaeology, 2(1), 1–31. Srivastava, A., & Prasad, R. (2000). Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews, 4(2), 111–133. Steele, V. J., Stern, B., & Stott, A. W. (2010). Olive oil or lard?: Distinguishing plant oils from animal fats in the archeological record of the eastern Mediterranean using gas chromatography/combustion/isotope ratio mass spectrometry. Rapid communications in mass spectrometry: RCM, 24(23), 3478–3484. Stiner, M. C. (2003). Zooarchaeological evidence for resource intensification in Algarve, southern Portugal. Promontoria, 1, 27–61. Stiner, M. C., Kuhn, S. L., Weiner, S., & Bar Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 22(2), 223–237. Stoops, G., & Vepraskas, M. J. (2003). Guidelines for analysis and description of soil and regolith thin sections. Fitchburg: Soil Science Society of America. Surovell, T. A., & Stiner, M. C. (2001). Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. Journal of Archaeological Science, 28(6), 633–642. Théry-Parisot, I. (2002). Fuel management (bone and wood) during the Lower Aurignacian in the Pataud rock shelter (Lower Palaeolithic, Les Eyzies de Tayac, Dordogne, France). Contribution of experimentation. Journal of Archaeological Science, 29(12), 1415–1421. Vajdi, M., Nawar, W. W., & Merritt, C. (1981). GC/MS analysis of some long chain esters, ketones and propanediol diesters. Journal of the American Oil Chemists’ Society, 58(2), 106–110. Vehik, S. C. (1977). Bone fragments and bone grease manufacturing: A review of their archaeological use and potential. Plains Anthropologist, 22(77), 169–182. Villa, P., Bon, F., & Castel, J. C. (2002). Fuel, fire and fireplaces in the Palaeolithic of Western Europe. The Review of Archaeology, 23(1), 33–42. Villa, P., Castel, J.-C., Beauval, C., Bourdillat, V., & Goldberg, P. (2004). Human and carnivore sites in the European Middle and Upper Paleolithic: Similarities and differences in bone modification and fragmentation. Revue de Paléobiologie., 23, 705–730. Villagran, X. S., Schaefer, C. E. G. R., & Ligouis, B. (2013). Living in the cold: Geoarchaeology of sealing sites from Byers Peninsula (Livingston Island, Antarctica). Quaternary International, 315, 184–199. Walton, T. J. (1990). Waxes, cutin, and suberin. In J. L. H. JL & J. R. Bowyer (Eds.), Methods in plant biochemistry (Vol. 4, pp. 105–158). San Diego: Academic. Wiedemeier, D. B., Abiven, S., Hockaday, W. C., Keiluweit, M., Kleber, M., Masiello, C. A., McBeath, A. V., Nico, P. S., Pyle, L. A., Schneider, M. P. W., Smernik, R. J., Wiesenberg, G. L. B., & Schmidt, M. W. I. (2015). Aromaticity and degree of aromatic condensation of char. Organic Geochemistry, 78, 135–143. Wiesenberg, G. L. B., Lehndorff, E., & Schwark, L. (2009). Thermal degradation of rye and maize straw: Lipid pattern changes as a function of temperature. Organic Geochemistry, 40(2), 167–174. Yellen, J. E. (1991). Small mammals: !Kung San utilization and the production of faunal assemblages. Journal of Anthropological Archaeology, 10(1), 1–26. Yravedra, J., & Uzquiano, P. (2013). Burnt bone assemblages from El Esquilleu cave (Cantabria, northern Spain): Deliberate use for fuel or systematic disposal of organic waste? Quaternary Science Reviews, 68, 175–190. Zinkel, D. F. (1989). Fats and fatty acids. In J. W. Rowe (Ed.), Natural products of woody plants (Springer Series in Wood Science). Berlin: Springer.