Xác thực thực nghiệm và nghiên cứu docking của các dẫn xuất flavone trên aldose reductase liên quan đến bệnh võng mạc tiểu đường, bệnh thần kinh và bệnh thận

Springer Science and Business Media LLC - Tập 20 - Trang 930-945 - 2010
Pagadala Nataraj Sekhar1, P. B. Kavi Kishor1, P. K. Zubaidha2, A. M. Hashmi2, T. A. Kadam3, Lakkireddy Anandareddy1, Marc De Maeyer4, K. Praveen Kumar5, B. Vijaya Bhaskar5, T. Munichandrababu5, G. Jayasree6, P. V. B. S. Narayana7, G. Gyananath3
1Department of Genetics, Osmania University, Hyderabad, India
2School of Chemical Sciences, S. R. T. M. University, Nanded, India
3School of Life Sciences, S. R. T. M. University, Nanded, India
4Laboratory of Biomolecular Modelling, Division Biochemistry, Molecular and Structural Biology, Department of Chemistry, Katholieke University, Leuven, Belgium
5Srivenkateswara University, Tirupathi, India
6Srinidhi Institute of Science and Technology, Hyderabad, India
7CARISM, SASTRA University, Thanjavur, India

Tóm tắt

Enzyme aldoreductase, đóng vai trò quan trọng trong quá trình sinh bệnh của bệnh võng mạc tiểu đường, bệnh thần kinh và bệnh thận, đã được tinh chế từ thấu kính trâu bò, và hoạt tính ức chế của nó đã được nghiên cứu với các dẫn xuất flavone tổng hợp 1-(2-hydroxyphenyl)ethanone làm vật liệu khởi đầu. Nghiên cứu thực nghiệm cho thấy 2-chloroflavone có hoạt tính ức chế ít hơn từ 60-70% so với các flavone khác được sử dụng trong nghiên cứu. Để xác nhận kết quả thực nghiệm bằng phương pháp tính toán, các nghiên cứu docking của các dẫn xuất flavone mới tổng hợp đã được thực hiện với enzyme aldose reductase, và các kết quả chỉ ra rằng 3-iodo, 4-methyl, 5-chloroflavone và 2-chloroflavone gắn kết với độ affinities cao và thấp hơn. Các nghiên cứu docking với site directed mutagenesis của các vị trí Val47Ile, Tyr48His, Pro121Phe, Trp219Tyr, Cys298Ala, Leu300Pro, Ser302Arg, và Cys303Asp của enzyme đã làm thay đổi hoạt tính ức chế của aldose reductase. Giá trị hồi quy (R²) là 0.81 giữa các điểm số docking của các chất ức chế đã biết và logIC50 thực nghiệm cho thấy độ tin cậy của các nghiên cứu docking. Hoạt tính sinh học và tính chất gây ung thư dự đoán rằng 3-iodo, 4-methyl, 5-chloroflavone là chất ức chế flavone tốt nhất đối với aldose reductase.

Từ khóa


Tài liệu tham khảo

Beyer-Mears A, Cruz E (1985) Reversal of diabetic cataract by sorbinil, an aldose reductase inhibitor. Diabetes 34:15–21 Bhatnagar A, Srivastava SK (1992) Aldose reductase: congenial and injurious profiles of an enigmatic enzyme. Biochem Med Metab Biol 48:91–121 Bohren KM, Grimshaw CE, Lai CJ, Harrison DH, Ringe D, Petsko GA, Gabbay KH (1994) Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Biochemistry 33:2021–2032 Bostrom J, Greenwood JR, Gottfries J (2003) Assessing the performance of OMEGA with respect to retrieving bioactive conformations. J Mol Graph Model 21:449–462 Brownlee JM, Carlson E, Milne AC, Pape E, Harrison DH (2006) Structural and thermodynamic studies of simple aldose reductase inhibitor complexes. Bioorg Chem 34:424–444 De Winter HL, von Itzstein M (1995) Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. Biochemistry 34:8299–8308 Dvornik D (1987) Hyperglycaemia in the pathogenesis of diabetic complications. In: Porte D (ed) Aldose reductase inhibition: an approach to the prevention of diabetic complications. McGraw Hill, New York Eldridge MD, Murray CW, Auton TR, Paolini GV, Mee RP (1997) Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. J Comput Aided Mol Des 11:425–445 Gabbay KH, Spack N, Loo S, Hirsch HJ, Ackil A (1979) Aldose reductase inhibition: studies with alrestatin. Metabolism 28:471–476 Gehlhaar DK, Verkhivker GM, Rejto PA, Sherman CJ, Fogel DB, Fogel LJ, Freer ST (1995) Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. Chem Biol 2:317–324 Grimshaw CE, Bohren KM, Lai CJ, Gabbay KH (1995a) Human aldose reductase: subtle effects revealed by rapid kinetic studies of the C298A mutant enzyme. Biochemistry 34:14366–14373 Grimshaw CE, Bohren KM, Lai CJ, Gabbay KH (1995b) Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition. Biochemistry 34:14374–14384 Harrison DH, Bohren KM, Ringe D, Petsko GA, Gabbay KH (1994) An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate cacodylate and glucose 6-phosphate. Biochemistry 33:2011–2020 Hayman S, Kinoshita H (1965) Isolation and properties of lens aldose reductase. J Biol Chem 240:877–882 Hoffman PL, Wermuth B, Von Wartburg JP (1980) Human brain aldehyde reductases: relationship to succinil semi aldehyde reductase and aldose reductase. J Neurochem 35:354–366 Inagaki K, Miwa I, Yashiro T, Okuda J (1982) Inhibition of aldose reductases from rat and bovine lenses by hydantoin derivatives. Chem Pharm Bull 30:3244–3254 Judzewitsch RG, Jaspan JB, Polonsky KS, Weinberg CR, Halter JB, Halar E, Pfeifer MA, Vukadinovich C, Bernstein L, Schneider M, Liang KL, Gabbay KH, Rubenstein AH, Porte D Jr (1983) Aldose reductase inhibition improves nerve conduction velocity in diabetic patients. N Engl J Med 308:119–125 Jung SH, Lee JM, Lee HJ, Kim CY, Lee EH, Um BH (2007) Aldose reductase and advanced glycation endproducts inhibitory effect of Phyllostachys nigra. Biol Pharm Bull 30:1569–1572 Kinoshita T, Miyake H, Fujii T, Takakura S, Goto T (2002) The structure of human recombinant aldose reductase complexed with the potent inhibitor zenarestat. Acta Crystallogr D 58:622–626 Kawamura M, Hamanaka N (1997) Development of epariestat (Kinedak), aldose reductase inhibitor. J Synth Org Chem Japan 37:651–657 Larson ER, Lipinski CA, Sarges R (1988) Medicinal chemistry of aldose reductase inhibitors. Med Res Rev 8:159–186 Lee YS, Hodoscek M, Brooks BR, Kador PF (1998) Catalytic mechanism of aldose reductase studied by the combined potentials of quantum mechanics and molecular mechanics. Biophys Chem 70:203–216 Martyn CN, Reid W, Young RJ, Ewing DJ, Clark BF (1987) Six-month treatment with sorbinil in asymptomatic diabetic neuropathy. Failure to improve abnormal nerve function. Diabetes 36:987–990 Masson EA, Boulton AJ (1990) Aldose reductase inhibitors in the treatment of diabetic neuropathy: a review of the rationale and clinical evidence. Drugs 39:190–202 Matsuda H, Morikawa T, Toguchida I, Yoshikawa M (2002) Structural requirements of flavonoids and related compounds for aldose reductase inhibitory activity. Chem Pharm Bull 50:788–795 McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68:76–90 Mylari BL, Larson ER, Beyer TA, Zembrowski WJ, Aldinger CE, Dee MF, Siegel TW, Singleton DH (1991) Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl] methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J Med Chem 34:108–122 Nakai N, Fujii Y, Kobashi K, Nomura K (1985) Aldose reductase inhibitors: flavonoids alkaloids acetophenones benzophenones and spirohydantoins of chroman. Arch Biochem Biophys 239:491–496 Narayanan S (1993) Aldose reductase and its inhibition in the control of diabetic complications. Ann Clin Lab Sci 23:148–158 O’Brien MM, Schofield PJ, Edwards MR (1982) Inhibition of human brain aldose reductase and hexonate dehydrogenase by alrestatin and sorbinil. J Neurochem 39:810–814 Poulsom R (1986) Inhibition of hexonate dehydrogenase and aldose reductase from bovine retina by sorbinil statil M79175 and valproate. Biochem Pharmacol 35:2955–2959 Raskin P, Rosenstock J (1987) Aldose reductase inhibitors and diabetic complications: a review. Am J Med 83:298–306 Robison WG Jr, Nagata M, Laver N, Hohman TC, Kinoshita JH (1989) Diabetic-like retinopathy in rats prevented with an aldose reductase inhibitor. Invest Ophthalmol Vis Sci 30:2285–2292 Schulz-Gasch T, Stahl M (2003) Binding site characteristics in structure based virtual screening: evaluation of current docking tools. J Mol Model 9:47–57 Stahl M, Rarey M (2001) Detailed analysis of scoring functions for virtual screening. J Med Chem 44:1035–1042 Steuber H, Heine A, Podjarny A, Klebe G (2008) Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features. J Mol Biol 379:991–1016 Terashima H, Hama K, Yamamoto R, Tsuboshima M, Kikkawa R, Hatanaka I, Shigeta YJ (1984) Effects of a new aldose reductase inhibitor on various tissues in vitro. Pharmacol Exp Ther 229:226–230 Urzhumtsev AG, Skovoroda TP, Vyu Lunin (1996) A procedure compatible with X-PLOR for the calculation of electron-density maps weighted using an R-free-likelihood based approach. J Appl Crystallogr 29:741–744 Varma SD, Kinoshita JH (1976) Inhibition of lens aldose reductase by flavonoids—their possible role in the prevention of diabetic cataracts. Biochem Pharmacol 25:2505–2513 Varma SD, Mikuni I, Kinoshita JH (1975) Flavonoids as inhibitors of lens aldose reductase. Science 188:1215–1216 Varnai P, Warshel A (2000) Computer simulation studies of the catalytic mechanism of human aldose reductase. J Am Chem Soc 122:3849–3860 Varnai P, Richards WG, Lyne PD (1999) Modelling the catalytic reaction in human aldose reductase. Proteins 37:218–227 Warren JC, Murdock GM, Ma Y, Goodman SR, Zimmer WE (1993) Molecular cloning of testicular 20-hydroxysteroid dehydrogenase. Biochemistry 32:1401–1406 Wermuth B, Monder C (1983) Aldose and aldehyde reductase exhibit isocorticosteroid reductase activity. Eur J Biochem 127:279–284 Williamson JR, Chang K, Frangos M et al (1993) Hyperglycemic pseudohypoxia and diabetic complications. Diabetes 42:801–813 Yabe-Nishimura C (1998) Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacol Rev 50:21–33