Nghiên cứu thực nghiệm về đặc điểm hành vi nứt dị hướng của đá phiến dưới lực nén và kéo

Xiangchao Sheng1, Lei Yang1, Ningbo Li1,2, Xujin Ma1, Xiaolong Wang1, Pai Wang1
1Geotechnical and Structural Engineering Research Center, Shandong University, Jinan, China
2Faculty of Engineering, Nagasaki University, Nagasaki, Japan

Tóm tắt

Sự hiểu biết sâu sắc về các đặc điểm dị hướng của đá phiến là cơ sở để cải thiện khả năng sản xuất khí đá phiến. Vì vậy, hành vi nứt của các đá phiến dưới lực nén và kéo đã được nghiên cứu thực nghiệm từ cả góc độ vĩ mô và vi mô. Các thí nghiệm nén đơn trục đã được thực hiện và ảnh hưởng của các lớp đá đến sự hình thành các vi nứt đã được phân tích thông qua cộng hưởng từ hạt nhân (NMR). Sau đó, các thí nghiệm tách Brazil và kính hiển vi quét laser cô đặc (CLSM) đã được thực hiện, và mối quan hệ tương ứng giữa chế độ phá hoại và hình thái bề mặt nứt đã được thảo luận. Kết quả cho thấy rằng các thuộc tính cơ học và chế độ phá hoại của đá phiến bị ảnh hưởng đáng kể bởi sự tồn tại của các mặt phẳng lớp. Tổng thể tích và kích thước các khuyết tật vi mô sau khi phá hoại tăng lên, và độ rỗng cao nhất của các vi nứt mới hình thành là của mẫu 0°. Các khuyết tật vi mô được phân loại thành hai loại, bao gồm vi nứt mao dẫn và vi nứt thấm. Các vi nứt mới hình thành ở các mẫu 0°, 30° và 90° chủ yếu do vi nứt thấm, trong khi các vi nứt ở mẫu 60° chủ yếu do vi nứt mao dẫn. Trong bài kiểm tra tách Brazil, hình thái bề mặt nứt của mẫu có liên quan chặt chẽ đến chế độ phá hoại và cơ chế.

Từ khóa

#đá phiến #hành vi nứt dị hướng #lực nén #lực kéo #vi nứt #thuộc tính cơ học #thí nghiệm #cộng hưởng từ hạt nhân #kính hiển vi quét laser cô đặc

Tài liệu tham khảo

Al-Mahrooqi SH, Grattoni CA, Moss AK, Jing XD (2003) An investigation of the effect of wettability on NMR characteristics of sandstone rock and fluid systems. J Pet Sci Eng 39:389–398. https://doi.org/10.1016/S0920-4105(03)00077-9 Anders MH, Laubach SE, Scholz CH (2014) Microfractures: a review. J Struct Geol 69:377–394. https://doi.org/10.1016/j.jsg.2014.05.011 Attewell PB, Sandford MR (1974) Intrinsic shear strength of a brittle, anisotropic rock–I: experimental and mechanical interpretation. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Elsevier, pp 423–430 Ban Y, Fu X, Xie Q (2020) Revealing the laminar shale microdamage mechanism considering the relationship between fracture geometrical morphology and acoustic emission power spectrum characteristics. Bull Eng Geol Environ 79:1083–1096. https://doi.org/10.1007/s10064-019-01599-8 Bieniawski ZT, Hawkes I (1978) Suggested methods for determining tensile strength of rock materials - 1. Suggested Method for Determining Direct Tensile Strength. Int J Rock Mech Min Sci 15:99–103 Cao H, Gao Q, Ye G et al (2020) Experimental investigation on anisotropic characteristics of marine shale in northwestern Hunan. China. J Nat Gas Sci Eng 81:103421. https://doi.org/10.1016/j.jngse.2020.103421 Cheng H, Zhou X, Pan X, Berto F (2021) Damage analysis of sandstone during the creep stage under the different levels of uniaxial stress using NMR measurements. Fatigue Fract Eng Mater Struct 44:719–732. https://doi.org/10.1111/ffe.13389 Cho JW, Kim H, Jeon S, Min KB (2012) Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. Int J Rock Mech Min Sci 50:158–169. https://doi.org/10.1016/j.ijrmms.2011.12.004 Chong Z, Li X, Hou P (2019) Experimental and numerical study of the effects of layer orientation on the mechanical behavior of shale. Arab J Sci Eng 44:4725–4743. https://doi.org/10.1007/s13369-018-3533-3 Cui Z, Qian S, Zhang G, Maochu Z (2021) An experimental investigation of the influence of loading rate on rock tensile strength and split fracture surface morphology. Rock Mech Rock Eng 54:1969–1983. https://doi.org/10.1007/s00603-021-02368-4 Dahi Taleghani A, Gonzalez-Chavez M, Yu H, Asala H (2018) Numerical simulation of hydraulic fracture propagation in naturally fractured formations using the cohesive zone model. J Pet Sci Eng 165:42–57. https://doi.org/10.1016/j.petrol.2018.01.063 Donath FA (1961) Experimental study of shear failure in anisotropic rocks. Geol Soc Am Bull 72:985–989 Dong H, Guo B, Li Y et al (2017) Empirical formula of shear strength of rock fractures based on 3D morphology parameters. Geotech Geol Eng 35:1169–1183. https://doi.org/10.1007/s10706-017-0172-5 Fischer C, Lüttge A (2007) Converged surface roughness parameters - a new tool to quantify rock surface morphology and reactivity alteration. Am J Sci 307:955–973. https://doi.org/10.2475/07.2007.01 Fu W, Ames BC, Bunger AP, Savitski AA (2016) Impact of partially cemented and non-persistent natural fractures on hydraulic fracture propagation. Rock Mech Rock Eng 49:4519–4526. https://doi.org/10.1007/s00603-016-1103-0 Heng S, Guo Y, Yang C et al (2015) Experimental and theoretical study of the anisotropic properties of shale. Int J Rock Mech Min Sci 74:58–68. https://doi.org/10.1016/j.ijrmms.2015.01.003 Hossain MM, Rahman MK, Rahman SS (2000) Hydraulic fracture initiation and propagation: roles of wellbore trajectory, perforation and stress regimes. J Pet Sci Eng 27:129–149. https://doi.org/10.1016/S0920-4105(00)00056-5 Hucka V, Das B (1974) Brittleness determination of rocks by different methods. Int J Rock Mech Min Sci 11:389–392. https://doi.org/10.1016/0148-9062(74)91109-7 Jeffrey RG, Bunger AP, Lecampion B et al (2009) Measuring hydraulic fracture growth in naturally fractured rock. Proc - SPE Annu Tech Conf Exhib 6:3750–3768. https://doi.org/10.2118/124919-ms Jin G, Xie R, Liu M et al (2019) A new method for permeability estimation using integral transforms based on NMR echo data in tight sandstone. J Pet Sci Eng 180:424–434. https://doi.org/10.1016/j.petrol.2019.05.056 Josh M, Esteban L, Delle Piane C et al (2012) Laboratory characterisation of shale properties. J Pet Sci Eng 88–89:107–124. https://doi.org/10.1016/j.petrol.2012.01.023 Khanlari G, Rafiei B, Abdilor Y (2015) An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones. Rock Mech Rock Eng 48:843–852. https://doi.org/10.1007/s00603-014-0576-y Khosravi A, Simon R, Rivard P (2017) The shape effect on the morphology of the fracture surface induced by the Brazilian test. Int J Rock Mech Min Sci 93:201–209. https://doi.org/10.1016/j.ijrmms.2017.01.007 Kovrizhnykh AM, Usol’tseva OM, Kovrizhnykh SA et al (2017) Investigation of strength of anisotropic rocks under axial compression and lateral pressure. J Min Sci 53:831–836. https://doi.org/10.1134/S1062739117052849 Li L, Huang B, Huang X et al (2020) Tensile and shear mechanical characteristics of longmaxi shale laminae dependent on the mineral composition and morphology. Energies 13:2977. https://doi.org/10.3390/en13112977 Liu K, Sheng JJ (2019) Experimental study of the effect of stress anisotropy on fracture propagation in Eagle Ford shale under water imbibition. Eng Geol 249:13–22. https://doi.org/10.1016/j.enggeo.2018.12.023 Liu Z, Xu H, Zhao Z, Chen Z (2019) DEM modeling of interaction between the propagating fracture and multiple pre-existing cemented discontinuities in shale. Rock Mech Rock Eng 52:1993–2001. https://doi.org/10.1007/s00603-018-1699-3 Liu Y, Huang D, Cen D et al (2021) Tensile strength and fracture surface morphology of granite under confined direct tension test. Rock Mech Rock Eng 54:4755–4769. https://doi.org/10.1007/s00603-021-02543-7 Ma T, Wu B, Fu J et al (2017) Fracture pressure prediction for layered formations with anisotropic rock strengths. J Nat Gas Sci Eng 38:485–503. https://doi.org/10.1016/j.jngse.2017.01.002 McGlade C, Speirs J, Sorrell S (2013) Unconventional gas - a review of regional and global resource estimates. Energy 55:571–584. https://doi.org/10.1016/j.energy.2013.01.048 McLamore R, Gray KE (1967) The mechanical behavior of anisotropic sedimentary rocks. J Eng Ind 89(1):62–73 Medellin D, Ravi VR, Torres-Verdín C (2019) Pore-size-dependent fluid substitution method for magnetic resonance measurements. Geophysics 84:D25–D38. https://doi.org/10.1190/geo2017-0457.1 Mei J, Yang L, Sheng X et al (2020) Time-dependent propagation of 3-D cracks in Rocks under hydromechanical coupling. Rock Mech Rock Eng 53:1923–1934. https://doi.org/10.1007/s00603-019-02020-2 Mei J, Yang L, Sheng X et al (2021) An experimental and theoretical investigation of time-dependent cracking and creep behavior of rocks under triaxial hydro-mechanical coupling. Theor Appl Fract Mech 115:103046. https://doi.org/10.1016/j.tafmec.2021.103046 Meier T, Rybacki E, Backers T, Dresen G (2015) Influence of bedding angle on borehole stability: a laboratory investigation of transverse isotropic oil shale. Rock Mech Rock Eng 48:1535–1546. https://doi.org/10.1007/s00603-014-0654-1 Niandou H, Shao JF, Henry JP, Fourmaintraux D (1997) Laboratory investigation of the mechanical behaviour of tournemire shale. Int J Rock Mech Min Sci 34:3–16. https://doi.org/10.1016/S1365-1609(97)80029-9 Pan X, Zhou X (2022) Damage analysis of sandstone during the creep stage after high-temperature heat treatment based on NMR technology. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-022-03048-7 Ramamurthy T (1993) Strength and modulus responses of anisotropic rocks. Compr Rock Eng 1:313–329 Salamon MDG (1968) Elastic moduli of a stratified rock mass. Int J Rock Mech Min Sci 5:519–527. https://doi.org/10.1016/0148-9062(68)90039-9 Saroglou H, Tsiambaos G (2008) A modified Hoek-Brown failure criterion for anisotropic intact rock. Int J Rock Mech Min Sci 45:223–234. https://doi.org/10.1016/j.ijrmms.2007.05.004 Sheng X, Yang L, Mei J et al (2022) Experimental investigation on mechanical performance and failure modes of shale interbedded with sandstone under triaxial compression. Bull Eng Geol Environ 81:262. https://doi.org/10.1007/s10064-022-02756-2 Shou YD, Zhao Z, Zhou XP (2020) Sensitivity analysis of segmentation techniques and voxel resolution on rock physical properties by X-ray imaging. J Struct Geol 133:103978. https://doi.org/10.1016/j.jsg.2020.103978 Vincent B, Fleury M, Santerre Y, Brigaud B (2011) NMR relaxation of neritic carbonates: an integrated petrophysical and petrographical approach. J Appl Geophys 74:38–58. https://doi.org/10.1016/j.jappgeo.2011.03.002 Wang M, Li P, Wu X, Chen H (2016) A study on the brittleness and progressive failure process of anisotropic shale. Environ Earth Sci 75:886. https://doi.org/10.1007/s12665-016-5700-8 Wang M, Xie J, Guo F et al (2020) Determination of NMR T2 cutoff and CT scanning for pore structure evaluation in mixed siliciclastic-carbonate rocks before and after acidification. Energies 13:1338. https://doi.org/10.3390/en13061338 Warpinski NR, Teufel LW (1987) Influence of geologic discontinuities on hydraulic fracture propagation (includes associated papers 17011 and 17074). J Pet Technol 39:209–220. https://doi.org/10.2118/13224-pa Yang L, Sheng X, Li W et al (2021) Effects of temperature and confining stress on the hydraulic fracturing behavior of granite: an experimental and numerical study. Arab J Sci Eng. https://doi.org/10.1007/s13369-021-06070-z Zhang T, Zhang JZ (2022) Numerical estimate of critical failure surface of slope by ordinary state-based peridynamic plastic model. Eng Fail Anal 140:106556. https://doi.org/10.1016/j.engfailanal.2022.106556 Zhang J, Zhou X (2020a) AE event rate characteristics of flawed granite: from damage stress to ultimate failure. Geophys J Int 222:795–814. https://doi.org/10.1093/gji/ggaa207 Zhang JZ, Zhou XP (2020b) Forecasting Catastrophic rupture in brittle rocks using precursory AE time series. J Geophys Res Solid Earth 125:e2019JB019276 Zhang SW, Shou KJ, Xian XF et al (2018) Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests. Tunn Undergr Sp Technol 71:298–308. https://doi.org/10.1016/j.tust.2017.08.031 Zhang Y, Cui K, Fu T et al (2021) Formation of MoSi2 and Si/MoSi2 coatings on TZM (Mo–0.5Ti–0.1Zr–0.02C) alloy by hot dip silicon-plating method. Ceram Int 47:23053–23065. https://doi.org/10.1016/j.ceramint.2021.05.020 Zhao Z, Zhou XP (2019a) Digital energy grade-based approach for crack path prediction based on 2D X-ray CT images of geomaterials. Fatigue Fract Eng Mater Struct 42:1292–1307. https://doi.org/10.1111/ffe.12979 Zhao Z, Zhou XP (2019b) Digital measurement of 2D and 3D cracks in sandstones through improved pseudo color image enhancement and 3D reconstruction method. Int J Numer Anal Methods Geomech 43:2565–2584. https://doi.org/10.1002/nag.2993 Zhao Z, Zhou XP (2019c) An integrated method for 3D reconstruction model of porous geomaterials through 2D CT images. Comput Geosci 123:83–94. https://doi.org/10.1016/j.cageo.2018.11.012 Zhao Z, Zhou X-P (2020) 3D digital analysis of cracking behaviors of rocks through 3D reconstruction model under triaxial compression. J Eng Mech 146:1–14. https://doi.org/10.1061/(asce)em.1943-7889.0001822 Zhao Z, Zhou XP (2021) Microscopic characterizations of heterogeneous pores, ITZs, multiple-solids, and their impacts on damage property of sandstone by low-high resolution 3D reconstruction. Geophys Res Lett 48:1–11. https://doi.org/10.1029/2021GL095001 Zhao Z, Zhou XP, Qian QH (2022) DQNN: Pore-scale variables-based digital permeability assessment of carbonates using quantum mechanism-based machine-learning. Sci China Technol Sci 65:458–469. https://doi.org/10.1007/s11431-021-1906-1 Zhou XP, Zhang JZ (2021) Damage progression and acoustic emission in brittle failure of granite and sandstone. Int J Rock Mech Min Sci 143:104789. https://doi.org/10.1016/j.ijrmms.2021.104789 Zhou XP, Zhang JZ, Qian QH, Niu Y (2019) Experimental investigation of progressive cracking processes in granite under uniaxial loading using digital imaging and AE techniques. J Struct Geol 126:129–145. https://doi.org/10.1016/j.jsg.2019.06.003 Zhou XP, Zhang JZ, Yang SQ, Berto F (2021) Compression-induced crack initiation and growth in flawed rocks: a review. Fatigue Fract Eng Mater Struct 44:1681–1707. https://doi.org/10.1111/ffe.13477 Zuo J, Lu J, Ghandriz R et al (2020) Mesoscale fracture behavior of Longmaxi outcrop shale with different bedding angles: experimental and numerical investigations. J Rock Mech Geotech Eng 12:297–309. https://doi.org/10.1016/j.jrmge.2019.11.001