Experimental study on combustion characteristics of Chinese RP-3 kerosene
Tài liệu tham khảo
Kumar, 2011, Laminar flame speeds and extinction limits of conventional and alternative jet fuels, Fuel, 90, 1004, 10.1016/j.fuel.2010.11.022
Bosschaart, 2004, The laminar burning velocity of flames propagating in mixtures of hydrocarbons and air measured with the heat flux method, Combust Flame, 136, 261, 10.1016/j.combustflame.2003.10.005
Weiss, 2008, Experimental study of Markstein length effects on laminar flamelet velocity in turbulent premixed flames, Combust Flame, 154, 671, 10.1016/j.combustflame.2008.06.011
Gu, 2000, Laminar burning velocity and Markstein lengths of methane–air mixtures, Combust Flame, 121, 41, 10.1016/S0010-2180(99)00142-X
Eisazadeh-Far, 2010, Flame structure and laminar burning speeds of JP-8/air premixed mixtures at high temperatures and pressures, Fuel, 89, 1041, 10.1016/j.fuel.2009.11.032
Eisazadeh-Far, 2011, The effect of diluent on flame structure and laminar burning speeds of JP-8/oxidizer/diluent premixed flames, Fuel, 90, 1476, 10.1016/j.fuel.2010.11.020
Kelley AP, Smallbone AJ, Zhu D, Law CK. Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures and temperatures. Reston: AIAA; 2010. Report No.: AIAA- 2010-0774.
Fuller CC, Gokulakrishnan P, Klassen MS, Adusumilli S, Kochar Y, Bloomer D, et al. Effects of vitiation and pressure on laminar flame speeds of n-decane. Reston: AIAA; 2012. Report No.: AIAA-2012-0167.
Singh D, Nishiie TI, Qiao L. Laminar burning speeds and Markstein lengths of n-decane/air, n-decane/O2/He, jet-A/air and S-8/air flames. Reston: AIAA; 2010. Report No.: AIAA-2010-0951.
Vukadinovic, 2013, Influence of pressure and temperature on laminar burning velocity and Markstein length of kerosene Jet A-1: Experimental and numerical study, Fuel, 111, 401, 10.1016/j.fuel.2013.03.076
Hu, 2009, Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, Int J Hydrogen Energy, 34, 4876, 10.1016/j.ijhydene.2009.03.058
Bradley, 1998, The measurement of laminar burning velocities and Markstein lengths for iso-octane-air and iso-octane-n-heptane-air mixtures at elevated temperatures and pressures in an explosion chamber, Combust Flame, 115, 126, 10.1016/S0010-2180(97)00349-0
Liang, 2013, Experimental study of the effect of nitrogen addition on gas explosion, J Loss Prev Process Ind, 26, 1, 10.1016/j.jlp.2012.08.002
Bradley, 1996, Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: a computational study, Combust Flame, 104, 176, 10.1016/0010-2180(95)00115-8
Huang, 2007, Measurement of laminar burning velocity of dimethyl ether-air premixed mixtures, Fuel, 86, 2360, 10.1016/j.fuel.2007.01.021
Burke, 2009, Effect of cylindrical confinement on the determination of laminar flame speeds using outwardly propagating flames, Combust Flame, 156, 771, 10.1016/j.combustflame.2009.01.013
Oran, 1985, Chemical-acoustic interactions in combustion systems, Prog Energy Combust Sci, 11, 253, 10.1016/0360-1285(85)90003-6
Jomaas, 2007, On transition to cellularity in expanding spherical flames, J Fluid Mech, 583, 1, 10.1017/S0022112007005885
Gu, 2010, Laminar burning velocities and flame instabilities of butanol isomers-air mixtures, Combust Flame, 157, 2318, 10.1016/j.combustflame.2010.07.003
Law, 2005, Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment, Proc Combust Inst, 30, 159, 10.1016/j.proci.2004.08.266
Warnatz, 2000
Jiang, 2006, 249
Zeng, 2015, Experimental and kinetic modeling study of ignition characteristics of Chinese RP-3 kerosene, Combust Sci Technol, 187, 396, 10.1080/00102202.2014.948620
Kim, 2014, A surrogate for emulating the physical and chemical properties of conventional jet fuel, Combust Flame, 161, 1489, 10.1016/j.combustflame.2013.12.015