Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer

Raúl Bayoán Cal1, José Lebrón2, Luciano Castillo2, Hyung Suk Kang3, Charles Meneveau3,4
1Portland State University 1 Department of Mechanical and Materials Engineering, , Portland, Oregon 97207, USA
2Rensselaer Polytechnic Institute 2 Department of Mechanical, Aerospace and Nuclear Engineering, , Troy, New York 12180, USA
3Johns Hopkins University 3 Department of Mechanical Engineering, , Baltimore, Maryland 21218, USA
4Johns Hopkins University 4 CEAFM, , Baltimore, Maryland 21218, USA

Tóm tắt

When wind turbines are deployed in large arrays, their ability to extract kinetic energy from the flow decreases due to complex interactions among them, the terrain topography and the atmospheric boundary layer. In order to improve the understanding of the vertical transport of momentum and kinetic energy across a boundary layer flow with wind turbines, a wind-tunnel experiment is performed. The boundary layer flow includes a 3×3 array of model wind turbines. Particle-image-velocity measurements in a volume surrounding a target wind turbine are used to compute mean velocity and turbulence properties averaged on horizontal planes. Results are compared with simple momentum theory and with expressions for effective roughness length scales used to parametrize wind-turbine arrays in large-scale computer models. The impact of vertical transport of kinetic energy due to turbulence and mean flow correlations is quantified. It is found that the fluxes of kinetic energy associated with the Reynolds shear stresses are of the same order of magnitude as the power extracted by the wind turbines, highlighting the importance of vertical transport in the boundary layer.

Từ khóa


Tài liệu tham khảo

2006, Wind Energy, 9, 39, 10.1002/we.189

1996, J. Wind. Eng. Ind. Aerodyn., 61, 71, 10.1016/0167-6105(95)00033-X

2000, J. Wind. Eng. Ind. Aerodyn., 84, 1, 10.1016/S0167-6105(98)00201-3

1998, J. Wind. Eng. Ind. Aerodyn., 74–76, 389, 10.1016/S0167-6105(98)00035-X

1997, Renewable Energy, 12, 225, 10.1016/S0960-1481(97)00046-3

1999, Renewable Energy, 18, 513, 10.1016/S0960-1481(98)00797-6

1999, J. Wind. Eng. Ind. Aerodyn., 80, 169, 10.1016/S0167-6105(98)00126-3

2003, Prog. Aerosp. Sci., 39, 467, 10.1016/S0376-0421(03)00078-2

2005, Experimental studies of wind turbine wakes: power optimization and meandering

2002, J. Fluids Eng., 124, 393, 10.1115/1.1471361

2006, Wind Energy, 9, 219, 10.1002/we.156

2009, Bound. Layer Met., 132, 129, 10.1007/s10546-009-9380-8

1998, Wind Energy, 1, 46, 10.1002/(SICI)1099-1824(199804)1:1+<46::AID-WE3>3.3.CO;2-0

2001, Wind Energy Handbook

1988, Atmos. Environ., 22, 803, 10.1016/0004-6981(88)90020-0

1988, windpower

1988, J. Wind. Eng. Ind. Aerodyn., 27, 139, 10.1016/0167-6105(88)90030-X

1990, J. Wind. Eng. Ind. Aerodyn., 14, 204

Davies, 1990, 53

Davies, 1990, 47

1992, J. Wind. Eng. Ind. Aerodyn., 39, 251, 10.1016/0167-6105(92)90551-K

1979, AIAA Pap., 79, 1

2004, Proc. Natl. Acad. Sci. U.S.A., 101, 16115, 10.1073/pnas.0406930101

2004, J. Geophys. Res., 109, D19101, 10.1029/2004JD004763

2009, Atmos. Chem. Phys., 9, 29172931

1991, Appl. Mech. Rev., 44, 1, 10.1115/1.3119492

2000, Annu. Rev. Fluid Mech., 32, 519, 10.1146/annurev.fluid.32.1.519

1991, Fluid Dyn. Res., 8, 53, 10.1016/0169-5983(91)90030-M

1996, J. Fluid Mech., 320, 331, 10.1017/S0022112096007562

2003, J. Fluid Mech., 480, 129, 10.1017/S0022112002003579

2008, Exp. Fluids, 44, 115, 10.1007/s00348-007-0380-5

1995, J. Geophys. Res., 100, 14243, 10.1029/94JD02616

2010, Phys. Fluids, 22, 015110, 10.1063/1.3291077

2004, Annu. Rev. Fluid Mech., 36, 173, 10.1146/annurev.fluid.36.050802.122103

1969, J. Appl. Meteorol., 8, 828, 10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2

Direct mechanical torque sensor for model wind turbines, Renewable Energy