Experimental study of nucleate pool boiling heat transfer on microporous structured by chemical etching method

Thermal Science and Engineering Progress - Tập 26 - Trang 101114 - 2021
S Kalita1, Pulak Sen2, Dipak Sen1, Sudev Das3, Ajoy Kumar Das2, Bidyut Baran Saha4,5
1Department of Mechanical Engineering, National Institute of Technology, Arunachal Pradesh, India
2Department of Mechanical Engineering, National Institute of Technology, Agartala, India
3Department of Chemical Engineering, National Institute of Technology Calicut, India
4International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
5Mechanical Engineering Department, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

Tài liệu tham khảo

Ebadian, 2011, A review of high-heat-flux heat removal technologies, J. Heat Transfer., 133, 1, 10.1115/1.4004340 Hendricks, 2010, Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper, Int. J. Heat Mass Transf., 53, 3357, 10.1016/j.ijheatmasstransfer.2010.02.025 T. H. E., 1966, Improving, the Maximum Water and Minimum From Values of the Heat Q Transmitted Under, Metal To Boiling, 9, 1419 Bourdon, 2013, Enhancing the onset of pool boiling by wettability modification on nanometrically smooth surfaces, Int. Commun. Heat Mass Transf., 45, 11, 10.1016/j.icheatmasstransfer.2013.04.009 Shojaeian, 2015, Pool boiling and flow boiling on micro- and nanostructured surfaces, Exp. Therm. Fluid Sci., 63, 45, 10.1016/j.expthermflusci.2014.12.016 Gupta, 2018, Experimental study of pool boiling heat transfer on copper surfaces with Cu-Al2O3 nanocomposite coatings, Int. Commun. Heat Mass Transf., 97, 47, 10.1016/j.icheatmasstransfer.2018.07.004 R. Furberg, N.N. Micro-porous, Enhanced Boiling Heat Transfer from a Copper Structure, (2006). El-Genk, 2010, Enhanced nucleate boiling on copper micro-porous surfaces, Int. J. Multiph. Flow., 36, 780, 10.1016/j.ijmultiphaseflow.2010.06.003 Jun, 2013, Pool boiling on nano-textured surfaces, Int. J. Heat Mass Transf., 62, 99, 10.1016/j.ijheatmasstransfer.2013.02.046 Xu, 2015, Enhanced boiling heat transfer on composite porous surface, Int. J. Heat Mass Transf., 80, 107, 10.1016/j.ijheatmasstransfer.2014.08.048 Sahu, 2015, Pool boiling on nano-textured surfaces comprised of electrically-assisted supersonically solution-blown, copper-plated nanofibers: Experiments and theory, Int. J. Heat Mass Transf., 87, 521, 10.1016/j.ijheatmasstransfer.2015.04.009 Dharmendra, 2016, Pool boiling heat transfer enhancement using vertically aligned carbon nanotube coatings on a copper substrate, Appl. Therm. Eng., 99, 61, 10.1016/j.applthermaleng.2015.12.081 Forrest, 2010, Augmentation of nucleate boiling heat transfer and critical heat flux using nanoparticle thin-film coatings, Int. J. Heat Mass Transf., 53, 58, 10.1016/j.ijheatmasstransfer.2009.10.008 Mt Aznam, 2016, Critical heat flux enhancement in water-based nanofluid with honeycomb porous plate on large heated surface, Int. Conf. Nucl. Eng. Proceedings, ICONE., 5, 1 Das, 2017, Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with crystalline TiO2 nanostructure, Appl. Therm. Eng., 113, 1345, 10.1016/j.applthermaleng.2016.11.135 Das, 2017, Effect of wettability on micro- and nanostructure surface using sessile droplet contact angle for heat transfer application, Iran. J. Sci. Technol. - Trans, Mech. Eng., 41, 129 Das, 2021, Experimental study of pool boiling heat transfer on an annealed TiO2 nanofilm heating surface, J. Therm. Anal. Calorim., 144, 1073, 10.1007/s10973-020-09503-3 Sur, 2018, Pool boiling heat transfer enhancement with electrowetting, Int. J. Heat Mass Transf., 120, 202, 10.1016/j.ijheatmasstransfer.2017.12.029 Kim, 2007, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, Int. J. Heat Mass Transf., 50, 4105, 10.1016/j.ijheatmasstransfer.2007.02.002 G. Suryanarayana, G.V. Rao, N. Balakrishna, Experimental investigation on Pool Boiling Heat Transfer with Sodium Dodecyl Sulfate, 3 (2015) 32–37. Quan, 2017, An experimental investigation on wettability effects of nanoparticles in pool boiling of a nanofluid, Int. J. Heat Mass Transf., 108, 32, 10.1016/j.ijheatmasstransfer.2016.11.098 Ahn, 2010, Pool boiling CHF enhancement by micro/nanoscale modification of zircaloy-4 surface, Nucl. Eng. Des., 240, 3350, 10.1016/j.nucengdes.2010.07.006 Jo, 2011, A study of nucleate boiling heat transfer on hydrophilic, hydrophobic and heterogeneous wetting surfaces, Int. J. Heat Mass Transf., 54, 5643, 10.1016/j.ijheatmasstransfer.2011.06.001 Zhang, 2012, Enhanced heat transfer performance of alumina sponge-like nanoporous structures through surface wettability control in nucleate pool boiling, Int. J. Heat Mass Transf., 55, 7487, 10.1016/j.ijheatmasstransfer.2012.07.053 Yao, 2012, Pool boiling heat transfer enhancement through nanostructures on silicon microchannels, J. Nanotechnol. Eng. Med., 3, 1, 10.1115/1.4007425 Tang, 2013, Pool-boiling enhancement by novel metallic nanoporous surface, Exp. Therm. Fluid Sci., 44, 194, 10.1016/j.expthermflusci.2012.06.008 Wei, 2011, Enhanced Boiling Heat Transfer from Micro-Pin-Finned Silicon Chips, Heat Transf. - Theor, Anal. Exp. Investig. Ind. Syst. Dong, 2014, An experimental investigation of enhanced pool boiling heat transfer from surfaces with micro/nano-structures, Int. J. Heat Mass Transf., 71, 189, 10.1016/j.ijheatmasstransfer.2013.11.068 Li, 2015, Experimental study on the saturated pool boiling heat transfer on nano-scale modification surface, Int. J. Heat Mass Transf., 84, 550, 10.1016/j.ijheatmasstransfer.2014.12.064 Allred, 2018, Enabling Highly Effective Boiling from Superhydrophobic Surfaces, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.174501 Searle, 2018, Influence of microstructure geometry on pool boiling at superhydrophobic surfaces, Int. J. Heat Mass Transf., 127, 772, 10.1016/j.ijheatmasstransfer.2018.07.044 Lee, 2018, Enhanced boiling heat transfer on nanowire-forested surfaces under subcooling conditions, Int. J. Heat Mass Transf., 120, 1020, 10.1016/j.ijheatmasstransfer.2017.12.100 J. P. Holman, Experimental Methods for Engineers, Seventh Ed, Tata McGraw Hill, Education Private Limited, 2007. W. M. Rohsenow, “A method of correlating heat transfer data for surface boiling of liquids,” Technical report (Massachusetts Institute of Technology, Heat Transfer Laboratory); no. 5, Cambridge, Mass.: M.I.T. Division of Industrial Cooporation, 1951. Betz, 2013, Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces, Int. J. Heat Mass Transf., 57, 733, 10.1016/j.ijheatmasstransfer.2012.10.080 Das, 2017, Experimental study of nucleate pool boiling heat transfer of water by surface functionalization with SiO2 nanostructure, Exp. Therm. Fluid Sci., 81, 454, 10.1016/j.expthermflusci.2016.09.009 Hsu, 2012, Surface wettability effects on critical heat flux of boiling heat transfer using nanoparticle coatings, Int. J. Heat Mass Transf., 55, 3713, 10.1016/j.ijheatmasstransfer.2012.03.003 Gajghate, 2020, Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface, J. Therm. Anal. Calorim., 140, 1393, 10.1007/s10973-019-08740-5 Kim, 2016, Effect of surface roughness on pool boiling heat transfer at a heated surface having moderate wettability, Int. J. Heat Mass Transf., 101, 992, 10.1016/j.ijheatmasstransfer.2016.05.067 Fang, 2017, A comparative study of correlations of critical heat flux of pool boiling, J. Nucl. Sci. Technol., 54, 1, 10.1080/00223131.2016.1209138 Kandlikar, 2001, A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation, J. Heat Transf., 123, 1071, 10.1115/1.1409265 Liao, 2008, Compositive effects of orientation and contact angle on critical heat flux in pool boiling of water, Heat Mass Transf., 44, 1447, 10.1007/s00231-008-0384-6