Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow

Experimental Thermal and Fluid Science - Tập 52 - Trang 68-78 - 2014
Mohammad Hemmat Esfe1, Seyfolah Saedodin1, Mostafa Mahmoodi2
1Faculty of Mechanical Engineering, Semnan University, Semnan, Iran
2Department of Mechanical Engineering,#R##N#Najafabad Branch, Islamic Azad University, Isfahan, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, FED-vol. 231/MD-vol. 66, 99

Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3, SiO2 and TiO2 ultra fine particles), Netsu Bussei (Japan), 4, 227, 10.2963/jjtp.7.227

Lee, 1999, Measuring thermal conductivity of fluid containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Mahian, 2013, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57, 582, 10.1016/j.ijheatmasstransfer.2012.10.037

Mahian, 2013, A review of entropy generation in nanofluid flow, Int. J Heat Mass Transfer, 65, 514, 10.1016/j.ijheatmasstransfer.2013.06.010

O. Mahian, A. Kianifar, S. Wongwises, Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis, J. Cluster Sci. doi:http://dx.doi.org/10.1007/s10876-013-0601-4.

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, transactions of ASME, J. Heat Transfer, 125, 567, 10.1115/1.1571080

Chandrasekar, 2010, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Therm. Fluid Sci., 34, 210, 10.1016/j.expthermflusci.2009.10.022

Yu, 2009, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Int. J. Therm. Acta, 491, 92, 10.1016/j.tca.2009.03.007

Yiamsawas, 2013, Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications, Appl. Energy, 111, 40, 10.1016/j.apenergy.2013.04.068

Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559

Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151, 10.1115/1.1532008

Suresh, 2011, Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube, Exp. Therm. Fluid Sci., 35, 542, 10.1016/j.expthermflusci.2010.12.008

Fotukian, 2010, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Commun. Heat Mass Transfer, 37, 214, 10.1016/j.icheatmasstransfer.2009.10.003

Syam Sundar, 2010, Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts, Int. J. Heat Mass Transfer, 53, 1409, 10.1016/j.ijheatmasstransfer.2009.12.016

Kayhani, 2012, Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid, Int. Commun. Heat Mass Transfer, 39, 456, 10.1016/j.icheatmasstransfer.2012.01.004

Williams, 2008, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, 130, 42412, 10.1115/1.2818775

Xuan, 2000, Conceptions for heat transfer correlation of nanofluid, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5

Maiga, 2004, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattice Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012

White, 2006

Murshed, 2005, Enhanced thermal conductivity of TiO2–water based nanofluids, Int. J. Therm. Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Wongcharee, 2011, Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis, Int. Commun. Heat Mass Transfer, 38, 742, 10.1016/j.icheatmasstransfer.2011.03.011

Buongiorno, 2006, Convective transport in nanofluids, J. Heat Transfer, 128, 240, 10.1115/1.2150834

Nasiri, 2011, Experimental heat transfer of nanofluid through an annular duct, Int. Comm. Heat Mass Transfer, 38, 958, 10.1016/j.icheatmasstransfer.2011.04.011

Incropera, 1996

Kline, 1953, Describing uncertainties in single-sample experiments, Mech. Eng., 75, 3

Fakoor Pakdaman, 2012, An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes, Exp. Therm. Fluid Sci., 40, 103, 10.1016/j.expthermflusci.2012.02.005

Hamilton, 1962, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fund., 1, 187, 10.1021/i160003a005

Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801

Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004

Vajjha, 2009, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer, 52, 4675, 10.1016/j.ijheatmasstransfer.2009.06.027

Wang, 1999, Thermal conductivity of nanoparticle–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

Gnielinski, 1976, Int. Chem. Eng., 16, 359

Petukhov, 1970, Heat transfer and friction in turbulent pipe flow with variable physical properties, vol. 6, 504

Duangthongsuk, 2009, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, 52, 2059, 10.1016/j.ijheatmasstransfer.2008.10.023

He, 2007, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024

Abbasian Arani, 2013, Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid, Exp. Therm. Fluid Sci., 44, 520, 10.1016/j.expthermflusci.2012.08.014

Nguyen, 2007, Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng., 27, 1501, 10.1016/j.applthermaleng.2006.09.028

Hashemi, 2012, An empirical study on heat transfer and pressure drop characteristics of CuO-base oil nanofluid flow in a horizontal helically coiled tube under constant heat flux, Int. Commun. Heat Mass Transfer, 39, 144, 10.1016/j.icheatmasstransfer.2011.09.002