Experimental studies on the convective heat transfer performance and thermophysical properties of MgO–water nanofluid under turbulent flow
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, FED-vol. 231/MD-vol. 66, 99
Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of c-Al2O3, SiO2 and TiO2 ultra fine particles), Netsu Bussei (Japan), 4, 227, 10.2963/jjtp.7.227
Lee, 1999, Measuring thermal conductivity of fluid containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Mahian, 2013, A review of the applications of nanofluids in solar energy, Int. J. Heat Mass Transfer, 57, 582, 10.1016/j.ijheatmasstransfer.2012.10.037
Mahian, 2013, A review of entropy generation in nanofluid flow, Int. J Heat Mass Transfer, 65, 514, 10.1016/j.ijheatmasstransfer.2013.06.010
O. Mahian, A. Kianifar, S. Wongwises, Dispersion of ZnO nanoparticles in a mixture of ethylene glycol–water, exploration of temperature-dependent density, and sensitivity analysis, J. Cluster Sci. doi:http://dx.doi.org/10.1007/s10876-013-0601-4.
Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, transactions of ASME, J. Heat Transfer, 125, 567, 10.1115/1.1571080
Chandrasekar, 2010, Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Exp. Therm. Fluid Sci., 34, 210, 10.1016/j.expthermflusci.2009.10.022
Yu, 2009, Investigation of thermal conductivity and viscosity of ethylene glycol based ZnO nanofluid, Int. J. Therm. Acta, 491, 92, 10.1016/j.tca.2009.03.007
Yiamsawas, 2013, Experimental studies on the viscosity of TiO2 and Al2O3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications, Appl. Energy, 111, 40, 10.1016/j.apenergy.2013.04.068
Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer, 11, 151, 10.1080/08916159808946559
Xuan, 2003, Investigation on convective heat transfer and flow features of nanofluids, J. Heat Transfer, 125, 151, 10.1115/1.1532008
Suresh, 2011, Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under turbulent flow in a helically dimpled tube, Exp. Therm. Fluid Sci., 35, 542, 10.1016/j.expthermflusci.2010.12.008
Fotukian, 2010, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Commun. Heat Mass Transfer, 37, 214, 10.1016/j.icheatmasstransfer.2009.10.003
Syam Sundar, 2010, Turbulent heat transfer and friction factor of Al2O3 nanofluid in circular tube with twisted tape inserts, Int. J. Heat Mass Transfer, 53, 1409, 10.1016/j.ijheatmasstransfer.2009.12.016
Kayhani, 2012, Experimental study of convective heat transfer and pressure drop of TiO2/water nanofluid, Int. Commun. Heat Mass Transfer, 39, 456, 10.1016/j.icheatmasstransfer.2012.01.004
Williams, 2008, Experimental investigation of turbulent convective heat transfer and pressure loss of alumina/water and zirconia/water nanoparticle colloids (nanofluids) in horizontal tubes, J. Heat Transfer, 130, 42412, 10.1115/1.2818775
Xuan, 2000, Conceptions for heat transfer correlation of nanofluid, Int. J. Heat Mass Transfer, 43, 3701, 10.1016/S0017-9310(99)00369-5
Maiga, 2004, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlattice Microstruct., 35, 543, 10.1016/j.spmi.2003.09.012
White, 2006
Murshed, 2005, Enhanced thermal conductivity of TiO2–water based nanofluids, Int. J. Therm. Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005
Wongcharee, 2011, Enhancement of heat transfer using CuO/water nanofluid and twisted tape with alternate axis, Int. Commun. Heat Mass Transfer, 38, 742, 10.1016/j.icheatmasstransfer.2011.03.011
Nasiri, 2011, Experimental heat transfer of nanofluid through an annular duct, Int. Comm. Heat Mass Transfer, 38, 958, 10.1016/j.icheatmasstransfer.2011.04.011
Incropera, 1996
Kline, 1953, Describing uncertainties in single-sample experiments, Mech. Eng., 75, 3
Fakoor Pakdaman, 2012, An experimental investigation on thermo-physical properties and overall performance of MWCNT/heat transfer oil nanofluid flow inside vertical helically coiled tubes, Exp. Therm. Fluid Sci., 40, 103, 10.1016/j.expthermflusci.2012.02.005
Hamilton, 1962, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fund., 1, 187, 10.1021/i160003a005
Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5, 167, 10.1023/A:1024438603801
Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004
Vajjha, 2009, Experimental determination of thermal conductivity of three nanofluids and development of new correlations, Int. J. Heat Mass Transfer, 52, 4675, 10.1016/j.ijheatmasstransfer.2009.06.027
Wang, 1999, Thermal conductivity of nanoparticle–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486
Gnielinski, 1976, Int. Chem. Eng., 16, 359
Petukhov, 1970, Heat transfer and friction in turbulent pipe flow with variable physical properties, vol. 6, 504
Duangthongsuk, 2009, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, 52, 2059, 10.1016/j.ijheatmasstransfer.2008.10.023
He, 2007, Heat transfer and flow behavior of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer, 50, 2272, 10.1016/j.ijheatmasstransfer.2006.10.024
Abbasian Arani, 2013, Experimental investigation of diameter effect on heat transfer performance and pressure drop of TiO2–water nanofluid, Exp. Therm. Fluid Sci., 44, 520, 10.1016/j.expthermflusci.2012.08.014
Nguyen, 2007, Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system, Appl. Therm. Eng., 27, 1501, 10.1016/j.applthermaleng.2006.09.028