Experimental simulations of shock textures in BCC iron: implications for iron meteorites
Tóm tắt
Neumann band in iron meteorites, which is deformation twins in kamacite (Fe–Ni alloy), has been known to be a characteristic texture indicating ancient collisions on parent bodies of meteorites. We conducted a series of shock recovery experiments on bcc iron with the projectile velocity at 1.5 km/s at various initial temperatures, room temperature, 670 K, and 1100 K, and conducted an annealing experiment on the shocked iron. We also conducted numerical simulations with the iSALE-2D code to investigate peak pressure and temperature distributions in the nontransparent targets. The effects of pressure and temperature on the formation and disappearance of the twins (Neumann band) were explored based on laboratory and numerical experiments. The twin was formed in the run products of the experiments conducted at room temperature and 670 K, whereas it was not observed in the run product formed by the impact at 1100 K. The present experiments combined with the numerical simulations revealed that the twin was formed by impacts with various shock pressures from 1.5–2 GPa to around 13 GPa. The twin in iron almost disappeared by annealing at 1070 K. The iron meteorites with Neumann bands were shocked at this pressure range and temperatures at least up to 670 K, and were not heated to the temperatures above 1070 K after the Neumann band formation.
Tài liệu tham khảo
Ahrens TJ (1987) Shock-wave techniques for geophysics and planetary physics. In: Sammis CG, Henyey TL (eds) Methods of experimental physics. Academic Press, New York, pp 185–235
Amsden A, Ruppel H, Hirt C(1980) Sale: a simplified ale computer program for fluid flows at all speeds. Technical report LA-8095 Report, Los Alamos National Laboratories
Bischoff A, Stöffler D (1992) Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur J Mineral 4:707–755
Buchwald VF (1975) Secondary structure of iron meteorite, Chapter 11, 125–136, in Handbook of iron meteorites, vol. 1, University of Hawaii
Calister WD, Rethwisch DG (2000) Materials science and engineering: an introduction, 8th edn. Wiley, Hoboken
Collins GS, Elbeshausen D, Davison TM, Wünnemann K, Ivanov BA, Melosh HJ (2016) iSALE-Dellen manual. Figshare. https://doi.org/10.6084/m9.figshare.3473690.v2
Cottrell AH, Aytekin VJ (1950) The flow of zinc under constant stress. Inst Met 77:389
Davidson AB (1940), The effect of annealing on Neumann bands. Electronic theses and dissertations. Paper 1705. https://doi.org/10.18297/etd/1705
Dunlop DJ, Özdemir Ö (2007) Iron and iron-nickel, treatise on geophysics. Treatise Geophys 5:277–336
Farla RJM, Kokkonen H, Fitz Gerald JD, Barnhoorn A, Faul UH, Jackson I (2010) Dislocation recovery in fine-grained polycrystalline olivine. Phys Chem Miner. https://doi.org/10.1007/s00269-010-0410-3
Glover G, Stellars M (1973) Recovery and recrystallization during high temperature deformation of α-Iron. Metall Trans 4:765–775
Goldstein JI, Scott ERD, Chabot NL (2009) Iron meteorites: Crystallization, thermal history, parent bodies, and origin. Chem Erde Geochem 69:293–325
Hilton CD, Bermingham KR, Walker RJ, Timothy J, McCoy TJ (2019) Genetics, crystallization sequence, and age of the South Byron Trio iron meteorites: new insights to carbonaceous chondrite (CC) type parent bodies. Geochim Cosmochim Acta 25:217–228
Humphreys J, Rohrer GS, Rollett A (2017) Recrystallization and related annealing phenomena, 3rd edn. Elsevier, Netherlands, 691p. ISBN978-0-08-098235-9
Hwang H, Galtier E, Cynn H, Eom I, Chun SH, Bang Y, Hwang G, Choi J, Kim T, Kong M, Kwon S, Kang K, Lee HJ, Park C, Lee JI, Lee Yongmoon, Yang W, Shim S-H, Vogt T, Kim Sangsoo, Park J, Kim Sunam, Nam D, Lee JH, Hyun H, Kim M, Koo T-Y, Kao C-C, Sekine T, Lee Y (2020) Subnanosecond phase transition dynamics in laser-shocked iron. Sci Adv 6:eaaz5132
Ivanov BA, Deniem D, Neukum G (1997) Implementation of dynamic strength models into 2-D hydrocodes: applications for atmospheric breakup and impact cratering. Int J Impact Eng 20:411–430
Jain AV, Lipschutz ME (1968) Implications of shock effects in iron meteorites. Nature 220:140–143
Kruijer TS, Burkhardt C, Budde G, Kleine T (2017) Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc Natl Acad Sci 114(2017):6712–6716
Li JCM (1962) Possibility of subgrain rotation during recrystallization. J Appl Phys 33:2958–2965
Marchi S, Durda DD, Polanskey CA, Asphaug E, Bottke WF, Elkins‐Tanton LT, et al (2020) Hypervelocity impact experiments in iron‐nickel ingots and iron meteorites: Implications for the NASA Psyche mission. J Geophys Res Planets 125:e2019JE005927. https://doi.org/10.1029/2019JE005927
Michalak JT, Paxton HW (1961) Some recovery characteristics of zone melted iron. Trans AIME 221:850–857
Miller GM, Stolper EM, Ahrens TJ (1991) The equation of state of molten komatiite 1. Shock wave compression to 36 GPa. J Geophys Res 96(B7):11831–11848
Monaghan BJ, Quested PN (2001) Thermal diffusivity of iron at high temperature in both the liquid and solid states. ISIJ Int 41:1524–1528
Murr LE, Trillo EA, Bujanda AA, Martinez NE (2002a) Comparison of residual microstructures associated with impact craters in fcc stainless steel and bcc iron target: the microtwin versus microband issue. Acta Mater 50:121–131
Murr LE, Bujanda AA, Trillo EA, Martinez NE (2002b) Deformation twins associated with impact craters in polycrystalline iron target. J Mater Sci Lett 21:559–563
Prinz F, Argon AS, Moffatt WC (1982) Recovery of dislocation structures in plastically deformed copper and nickel single crystals. Acta Metall 30:821–830
Reisener RJ, Goldstein JI (2003) Ordinary Chondrite metallography: part 1. Fe-Ni taenite cooking experiments. Meteorit Planet Sci 38:1669–1678
Rohde RW (1969) Dynamic yield behavior of shock-loaded iron from 76 to 573°K. Acta Metall 17:353–363
Scott ERD (2020) Iron meteorites: composition, age, and origin. Oxf Res Encycl Planet Sci. https://doi.org/10.1093/acrefore/9780190647926.013.206
Shinohara M (2002) Study of development of a compact two-stage light gas gun and its ignition system. Master of Science thesis, Institute of Fluid Science, Tohoku University
Stöffler D, Keil K, Scott ERD (1991) Shock metamorphism of ordinary chondrites. Geochim Cosmochim Acta 55:3845–3867
Thompson SL, Lauson HS (1972) Improvements in the Chart D radiation-hydrodynamic CODE III: Revised analytic equations of state. Rep. SC-RR-71 0714, pp 1–119, Sandia Natl. Lab., Albuquerque, NM
Thompson SL (1990) ANEOS analytic equations of state for shock physics codes input manual. Sandia report, SAND89-2951·UC-404
Tomita M, Inaguma T, Sakamoto H, Ushioda K (2017) Recrystallization behavior and texture evolution in severely coldrolled Fe-0.3mass%Si and Fe-0.3mass%Al Alloys. ISIJ Int 57:921–928
Uhlig HH (1955) Contribution of metallurgy to the origin of meteorites, part II—the significance of Neumann bands in meteorites. Geochim Cormochim Acta 7:34–42
Van Drunen G, Saimoto S (1971) Deformation and recovery of [001] oriented copper crystals. Acta Metall 19:213–221
Wasson JT (1967) The chemical classification of iron meteorites. I(Ge and Ga concentration in selected Fe meteorites used to determine quantization in terms of multiple parent body hypothesis and planetary fractionation processes). Geochim Cosmochim Acta 31:161–180
Wasson JT, Choi B-G, Jerde EA, Ulff-Møller F (1998) Chemical classification of iron meteorites: XII. New members of the magmatic groups. Geochim Cosmochim Acta 62:715–724
Watanabe T, Karashima S (1970) An analysis of high temperature creep in alpha iron based on the super jog mechanism. Trans Jpn Inst Met 11:159–165
Wünnemann K, Collins G, Melosh H (2006) A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus 180:514–527
Yang J, Goldstein I, Scott ERD, Michael JR, Kotula PG, Pham T, McCoy TJ (2011) Thermal and impact histories of reheated group IVA, IVB, and ungrouped iron meteorites and their parent asteroids. Meteorit Planet Sci 46:1227–1252. https://doi.org/10.1111/j.1945-5100.2011.01210.x