Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid
Tóm tắt
Từ khóa
Tài liệu tham khảo
Choi, 1995, Developments and applications of non-Newtonian flows, ASME FED, 66, 99
Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218
Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272
Murshed, 2008, Thermophysical and electrokinetic properties of nanofluids – a critical review, Appl. Therm. Eng., 28, 2109, 10.1016/j.applthermaleng.2008.01.005
Choi, 2008, Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants, Curr. Appl. Phys., 8, 710, 10.1016/j.cap.2007.04.060
Duangthongsuk, 2009, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, Exp. Therm. Fluid Sci., 33, 706, 10.1016/j.expthermflusci.2009.01.005
Li, 2008, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids, Thermochim. Acta, 469, 98, 10.1016/j.tca.2008.01.008
Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer, 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026
Choi, 2009, Nanofluids: from vision to reality through research, J. Heat Transfer, 131, 033106-1, 10.1115/1.3056479
Kang, 2006, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19, 181, 10.1080/08916150600619281
Prasher, 2006, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 89, 133108-1, 10.1063/1.2356113
Nguyen, 2008, Viscosity data for Al2O3/water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci., 47, 103, 10.1016/j.ijthermalsci.2007.01.033
Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004
Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei (Japan), 7, 227, 10.2963/jjtp.7.227
Wang, 1999, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486
Xie, 2008, Measurements of the viscosity of suspensions (nanofluids) containing nanosized Al2O3 particles, High Temp.-High Press., 37, 127
Namburu, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci., 323, 97
Avsec, 2007, The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics, Int. J. Heat Mass Transfer, 50, 4331, 10.1016/j.ijheatmasstransfer.2007.01.064
Krieger, 1959, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol., 3, 137, 10.1122/1.548848
Putnam, 2006, Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 99, 084308, 10.1063/1.2189933
Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080
ASTM D 5334-00. Standard Test Methods for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. vol. 04.08, ASTM, 100 Barr-Harbor Dr., West Conshocken, PA 19428-2059, 2000.
IEEE STD 442-1981. IEEE Guide for Thermal Resistivity Measurements, The Institute of Electrical and Electronics Engineers, Inc., 345 East 47 Street, New York, NY 10017.
Maxwell, 1881
Reid, 1977
Chandrasekar, 2009, New analytical models to investigate thermal conductivity of nanofluids, J. Nanosci. Nanotechnol., 9, 533, 10.1166/jnn.2009.J025
Fullman, 1953, Measurement of particle sizes in opaque bodies, J. Metals, 5, 447
Noni, 2002, A modified model for the viscosity of ceramic suspensions, Ceram. Int., 28, 731, 10.1016/S0272-8842(02)00035-4