Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid

Experimental Thermal and Fluid Science - Tập 34 Số 2 - Trang 210-216 - 2010
M. Chandrasekar1, S. Suresh1, A. Chandra Bose2
1Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli, 620 015, India
2Nanomaterials laboratory, National Institute of Technology, Tiruchirappalli – 620 015, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Choi, 1995, Developments and applications of non-Newtonian flows, ASME FED, 66, 99

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Choi, 2001, Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79, 2252, 10.1063/1.1408272

Murshed, 2008, Thermophysical and electrokinetic properties of nanofluids – a critical review, Appl. Therm. Eng., 28, 2109, 10.1016/j.applthermaleng.2008.01.005

Choi, 2008, Preparation and heat transfer properties of nanoparticle-in-transformer oil dispersions as advanced energy-efficient coolants, Curr. Appl. Phys., 8, 710, 10.1016/j.cap.2007.04.060

Duangthongsuk, 2009, Measurement of temperature-dependent thermal conductivity and viscosity of TiO2–water nanofluids, Exp. Therm. Fluid Sci., 33, 706, 10.1016/j.expthermflusci.2009.01.005

Li, 2008, Thermal conductivity enhancement dependent pH and chemical surfactant for Cu–H2O nanofluids, Thermochim. Acta, 469, 98, 10.1016/j.tca.2008.01.008

Lee, 2008, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer, 51, 2651, 10.1016/j.ijheatmasstransfer.2007.10.026

Choi, 2009, Nanofluids: from vision to reality through research, J. Heat Transfer, 131, 033106-1, 10.1115/1.3056479

Kang, 2006, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transfer, 19, 181, 10.1080/08916150600619281

Prasher, 2006, Measurements of nanofluid viscosity and its implications for thermal applications, Appl. Phys. Lett., 89, 133108-1, 10.1063/1.2356113

Nguyen, 2008, Viscosity data for Al2O3/water nanofluid–hysteresis: is heat transfer enhancement using nanofluids reliable?, Int. J. Therm. Sci., 47, 103, 10.1016/j.ijthermalsci.2007.01.033

Murshed, 2008, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci., 47, 560, 10.1016/j.ijthermalsci.2007.05.004

Masuda, 1993, Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of Al2O3, SiO2 and TiO2 ultra-fine particles), Netsu Bussei (Japan), 7, 227, 10.2963/jjtp.7.227

Wang, 1999, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13, 474, 10.2514/2.6486

Xie, 2008, Measurements of the viscosity of suspensions (nanofluids) containing nanosized Al2O3 particles, High Temp.-High Press., 37, 127

Namburu, 2007, Viscosity of copper oxide nanoparticles dispersed in ethylene glycol and water mixture, Exp. Therm. Fluid Sci., 323, 97

Avsec, 2007, The calculation of thermal conductivity, viscosity and thermodynamic properties for nanofluids on the basis of statistical nanomechanics, Int. J. Heat Mass Transfer, 50, 4331, 10.1016/j.ijheatmasstransfer.2007.01.064

Krieger, 1959, A mechanism for non-Newtonian flow in suspensions of rigid spheres, Trans. Soc. Rheol., 3, 137, 10.1122/1.548848

Chen, 2007, Rheological behaviour of nanofluids, New J. Phys., 9, 367-1, 10.1088/1367-2630/9/10/367

Putnam, 2006, Thermal conductivity of nanoparticle suspensions, J. Appl. Phys., 99, 084308, 10.1063/1.2189933

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080

ASTM D 5334-00. Standard Test Methods for Determination of Thermal Conductivity of Soil and Soft Rock by Thermal Needle Probe Procedure. vol. 04.08, ASTM, 100 Barr-Harbor Dr., West Conshocken, PA 19428-2059, 2000.

IEEE STD 442-1981. IEEE Guide for Thermal Resistivity Measurements, The Institute of Electrical and Electronics Engineers, Inc., 345 East 47 Street, New York, NY 10017.

Maxwell, 1881

Reid, 1977

Weber, 1880, Wiedermann’s Ann. Phys. Chem., 10, 103, 10.1002/andp.18802460508

Chandrasekar, 2009, New analytical models to investigate thermal conductivity of nanofluids, J. Nanosci. Nanotechnol., 9, 533, 10.1166/jnn.2009.J025

Fullman, 1953, Measurement of particle sizes in opaque bodies, J. Metals, 5, 447

Noni, 2002, A modified model for the viscosity of ceramic suspensions, Ceram. Int., 28, 731, 10.1016/S0272-8842(02)00035-4

Zhu, 2006, Effects of nanoparticle clustering and alignment on thermal conductivities of Fe3O4 aqueous nanofluids, Appl. Phys. Lett., 89, 023123-1, 10.1063/1.2221905