Experimental investigation on enhancement of ammonia absorption process with TiO2 nanoparticles in newly designed absorber

International Journal of Refrigeration - Tập 100 - Trang 93-103 - 2019
Weixue Jiang1, Shuhong Li1, Liu Yang1, Kai Du1
1Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, Jiangsu, 210096, China

Tài liệu tham khảo

Ali, 2010, Design of a compact absorber with a hydrophobic membrane contactor at the liquid – vapor interface for lithium bromide – water absorption chillers q, Appl. Energy, 87, 1112, 10.1016/j.apenergy.2009.05.018 Aliane, 2016, An illustrated review on solar absorption cooling experimental studies, Renew. Sustain. Energy Rev., 65, 443, 10.1016/j.rser.2016.07.012 Aman, 2014, Residential solar air conditioning : energy and exergy analyses of an ammonia e water absorption cooling system, Appl. Therm. Eng., 62, 424, 10.1016/j.applthermaleng.2013.10.006 Amaris, 2014, Passive intensi fi cation of the ammonia absorption process with NH3/LiNO3 using carbon nanotubes and advanced surfaces in a tubular bubble absorber, Energy, 68, 519, 10.1016/j.energy.2014.02.039 Bakhshan, 2014, A new correlation for viscosity of nanofluids with considering the temperature dependence, J. Comput. Theor. Nanosci., 11, 583, 10.1166/jctn.2014.3398 Berdasco, 2017, Theoretical and experimental study of the ammonia / water absorption process using a flat sheet membrane module, Appl. Therm. Eng., 124, 477, 10.1016/j.applthermaleng.2017.06.027 Cerezo, 2010, Comparison of numerical and experimental performance criteria of an ammonia – water bubble absorber using plate heat exchangers, Int. J. Heat Mass Transf., 53, 3379, 10.1016/j.ijheatmasstransfer.2010.02.031 Cerezo, 2011, A study of a bubble absorber using a plate heat exchanger with NH3-H2O, NH3-LiNO3 and NH3-NaSCN, Appl. Therm. Eng., 31, 1869, 10.1016/j.applthermaleng.2011.02.032 Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, ASME-Publications-Fed, 231, 99 Fernández-seara, 2005, Ammonia – water absorption in vertical tubular absorbers, Int. J. Therm. Sci., 44, 277, 10.1016/j.ijthermalsci.2004.09.001 Hossein, 2018, Separation and purification technology investigation of the effects of nanoparticle size on CO2 absorption by silica-water nanofluid, Sep. Purif. Technol., 195, 208, 10.1016/j.seppur.2017.12.020 Jamil, 2016, The use of nanofluids for enhancing the thermal performance of stationary solar collectors : a review, Renew. Sustain. Energy Rev., 63, 226, 10.1016/j.rser.2016.05.063 Jiang, 2016, Visual experimental research on the effect of nozzle orifice structure on R124 – DMAC absorption process in a vertical bubble tube, Int. J. Refrig., 68, 107, 10.1016/j.ijrefrig.2016.04.025 Jiang, 2017, Heat and mass transfer characteristics of R124-DMAC bubble absorption in a vertical tube absorber, Exp. Therm. Fluid Sci., 81, 466, 10.1016/j.expthermflusci.2016.09.008 Jiang, 2017, Experimental investigation on the influence of high temperature on viscosity, thermal conductivity and absorbance of ammonia-water nanofluid, Int. J. Refrig., 82, 189, 10.1016/j.ijrefrig.2017.05.030 Jiang, 2018, Experimental Investigation on performance of ammonia absorption refrigeration system with TiO2 nanofluid, Int. J. Refrig. Jorge, 2015, Nanofluids containing MWCNTs coated with nitrogen-rich plasma polymer films for CO2 absorption in aqueous medium, Plasma Process. Polym., 12, 1311, 10.1002/ppap.201500040 K, 2015, Possible artifacts of data biases in the recent global surface warming hiatus, Science, 348, 1469, 10.1126/science.aaa5632 Kim, 2006, The effect of nano-particles on the bubble absorption performance in a binary nanofluid, Int. J. Refrig., 29, 22, 10.1016/j.ijrefrig.2005.08.006 Lee, 2011, Measurement of absorption rates in horizontal-tube falling-film ammonia-water absorbers, Int. J. Refrig., 35, 613, 10.1016/j.ijrefrig.2011.08.011 Ma, 2009, Enhancement of bubble absorption process using a CNTs-ammonia binary nanfluid, Int. Commun. Heat Mass Transf., 36, 657, 10.1016/j.icheatmasstransfer.2009.02.016 Maxwell, 1981 Narváez-romo, 2017, A critical review of heat and mass transfer correlations for LiBr-H2O and NH3-H2O absorption refrigeration machines using falling liquid film technology, Appl. Therm. Eng., 123, 1079, 10.1016/j.applthermaleng.2017.05.092 Oronel, 2013, Heat and mass transfer in a bubble plate absorber with NH3/LiNO3 and NH3/(LiNO3+H2O) mixtures, Int. J. Therm. Sci., 63, 105, 10.1016/j.ijthermalsci.2012.07.007 Otanicar, 2010, Nanofluid-based direct absorption solar collector, J. Renew. Sustain. Energy, 2, 33102, 10.1063/1.3429737 Pak, 1998, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151, 10.1080/08916159808946559 Said, 2013, New correlation equations for ammonia-water vapor-liquid equilibrium (VLE) thermodynamic properties, ASHRAE Trans., 119, (1) Sekhar, 2013, Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations, J. Exp. Nanosci., 10, 86, 10.1080/17458080.2013.796595 Shahrul, 2014, A comparative review on the specific heat of nano fluids for energy perspective, Renew. Sustain. Energy Rev., 38, 88, 10.1016/j.rser.2014.05.081 Shamsetdinov, 2013, Experimental study of the thermal conductivity of ammonia + water refrigerant mixtures at temperatures from 278 K to 356 K and at pressures up to 20 MPa, Int. J. Refrig., 36, 1347, 10.1016/j.ijrefrig.2013.02.008 Su, 2015, Numerical analysis of ammonia bubble absorption in a binary nanofluid, Chem. Eng. Commun., 202, 500, 10.1080/00986445.2013.850578 Triché, 2016, Modeling and experimental study of an ammonia-water falling film absorber, Energy Procedia, 91, 857, 10.1016/j.egypro.2016.06.252 Triché, 2017, Experimental and numerical study of a falling film absorber in an ammonia-water absorption chiller, Int. J. Heat Mass Transf., 111, 374, 10.1016/j.ijheatmasstransfer.2017.04.008 Wu, 2013, Nanoferrofluid addition enhances ammonia / water bubble absorption in an external magnetic field, Energy Build, 57, 268, 10.1016/j.enbuild.2012.10.032 Wu, 2018, Development of bubble absorption refrigeration technology : a review, Renew. Sustain. Energy Rev., 82, 3468, 10.1016/j.rser.2017.10.109 Yang, 2012, Investigations of selection of nanofluid applied to the ammonia absorption refrigeration system, Int. J. Refrig., 5, 2248, 10.1016/j.ijrefrig.2012.08.003 Yang, 2010, Experimental study on enhancement of ammonia e water falling film absorption by adding nano-particles, Int. J. Refrig., 34, 1 Yang, 2014, Numerical investigation of ammonia falling film absorption outside vertical tube with nanofluids, Int. J. Heat Mass Transf., 79, 241, 10.1016/j.ijheatmasstransfer.2014.08.016 Yang, 2017, Dynamic characteristics of an environment-friendly refrigerant: ammonia-water based TiO2 nanofluid, Int. J. Refrig., 82, 366, 10.1016/j.ijrefrig.2017.06.006 Yang, 2015, Retrofits and options for the alternatives to HCFC-22, Energy, 59, 2013