Nghiên cứu thực nghiệm hiệu suất nhiệt của hệ thống lưu trữ năng lượng nhiệt tiềm tàng hình trụ nhiều ống theo chiều dọc
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abreha BG, Mahanta P, Trivedi G (2020) Thermal performance evaluation of multi-tube cylindrical LHS system. Appl Therm Eng 179:115743. https://doi.org/10.1016/j.applthermaleng.2020.115743
Agyenim F, Eames P, Smyth M (2010) Heat transfer enhancement in medium temperature thermal energy storage system using a multitube heat transfer array. Renew Energy 35:198–207. https://doi.org/10.1016/j.renene.2009.03.010
Agyenim F (2016) The use of enhanced heat transfer phase change materials (PCM) to improve the coefficient of performance (COP) of solar powered LiBr/H2O absorption cooling systems. Renew Energy 87:229–239. https://doi.org/10.1016/j.renene.2015.10.012
Al-Maghalseh M, Mahkamov K (2018) Methods of heat transfer intensification in PCM thermal storage systems: review paper. Renew Sust Energ Rev 92:62–94. https://doi.org/10.1016/j.rser.2018.04.064.
Anish R, Mariappan V, Mastani Joybari M (2019) Experimental investigation on the melting and solidification behavior of erythritol in a horizontal shell and multi-finned tube latent heat storage unit. Appl Therm Eng 114194. https://doi.org/10.1016/j.applthermaleng.2019.114194
Bhagat K, Prabhakar M, Saha SK (2018) Estimation of thermal performance and design optimization of finned multitube latent heat thermal energy storage. J Energy Storage 19:135–144
Caron-Soupart A, Fourmigué J-F, Marty P, Couturier R (2016) Performance analysis of thermal energy storage systems using phase change material. Appl Therm Eng 98:1286–1296
Dandotiya D, Banker N (2017) Numerical investigation of heat transfer enhancement in a multitube thermal energy storage heat exchanger using fins. Numer Heat Transfer, Part A: Applications 72:389–400
Dhanapal B, Sathyamurthy R, Kabeel AE, Thakur AK (2022) Optimization of thermal efficiency on solar parabolic collectors using phase change materials — experimental and numerical study. Environ Sci Pollut Res 29:14719–14732. https://doi.org/10.1007/s11356-021-16705-1
Erek A, Dincer I (2008) An approach to entropy analysis of a latent heat storage module. Int J Therm Sci 47:1077–1085
Esapour M, Hosseini MJ, Ranjbar AA, Bahrampoury R (2016a) Numerical study on geometrical specifications and operational parameters of multi-tube heat storage systems. Appl Therm Eng 109:351–363. https://doi.org/10.1016/j.applthermaleng.2016.08.083
Esapour M, Hosseini MJ, Ranjbar AA, Pahamli Y, Bahrampoury R (2016b) Phase change in multi-tube heat exchangers. Renew Energy 85:1017–1025. https://doi.org/10.1016/j.renene.2015.07.063
Esapour M, Hamzehnezhad A, RabienatajDarzi AA, Jourabian M (2018) Melting and solidification of PCM embedded in porous metal foam in horizontal multi-tube heat storage system. Energy Conv Manag 171:398–410. https://doi.org/10.1016/j.enconman.2018.05.086
Ezan MA, Ozdogan M, Erek A (2011) Experimental study on charging and discharging periods of water in a latent heat storage unit. Int J Therm Sci 50:2205–2219. https://doi.org/10.1016/j.ijthermalsci.2011.06.010
Fang Y, Niu J, Deng S (2018) Numerical analysis for maximizing effective energy storage capacity of thermal energy storage systems by enhancing heat transfer in PCM. Energy Build 160:10–18
Han G-S, Ding H-S, Huang Y, Tong L-G, Ding Y-L (2017) A comparative study on the performances of different shell-and-tube type latent heat thermal energy storage units including the effects of natural convection. Int Commun Heat Mass 88:228–235
Joybari MM, Seddegh S, Wang X, Haghighat F (2019) Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renew Energy 140:234–244
Kabbara M, Groulx D, Joseph A (2016) Experimental investigations of a latent heat energy storage unit using finned tubes. Appl Therm Eng 101:601–611. https://doi.org/10.1016/j.applthermaleng.2015.12.080
Kalapala L, Devanuri JK (2018) Influence of operational and design parameters on the performance of a PCM based heat exchanger for thermal energy storage–a review. J Energy Storage 20:497–519
Kousha N, Hosseini MJ, Aligoodarz MR, Pakrouh R, Bahrampoury R (2017) Effect of inclination angle on the performance of a shell and tube heat storage unit – an experimental study. Appl Therm Eng 112:1497–1509. https://doi.org/10.1016/j.applthermaleng.2016.10.203
Kousha N, Rahimi M, Pakrouh R, Bahrampoury R (2019) Experimental investigation of phase change in a multitube heat exchanger. J Energy Storage 23:292–304. https://doi.org/10.1016/j.est.2019.03.024
Luo K, Yao F-J, Yi H-L, Tan H-P (2015) Lattice boltzmann simulation of convection melting in complex heat storage systems filled with phase change materials. Appl Therm Eng 86:238–250. https://doi.org/10.1016/j.applthermaleng.2015.04.059
Mishra DK, Bhowmik C, Bhowmik S, Pandey KM (2022) Property-enhanced paraffin-based composite phase change material for thermal energy storage: a review. Environ Sci Pollut Res 29:43556–43587. https://doi.org/10.1007/s11356-022-19929-x
Modi N, Wang X, Negnevitsky M (2022) Melting and solidification characteristics of a semi-rotational eccentric tube horizontal latent heat thermal energy storage. Appl Therm Eng 214:118–812. https://doi.org/10.1016/j.applthermaleng.2022.118812
Modi N, Wang X, Negnevitsky M (2023) Numerical investigation into selecting the most suitable shell-to-tube diameter ratio for horizontal latent heat thermal energy storage. Energy Sustain Dev 73:188–204. https://doi.org/10.1016/j.esd.2023.02.004
Murray RE, Groulx D (2014a) Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 1 consecutive charging and discharging. Renew Energy 62:571–581
Murray RE, Groulx D (2014b) Experimental study of the phase change and energy characteristics inside a cylindrical latent heat energy storage system: Part 2 simultaneous charging and discharging. Renew Energy 63:724–734. https://doi.org/10.1016/j.renene.2013.10.004
Naveenkumar R, Ravichandran M, Mohanavel V, Karthick A, Aswin LSRL, Priyanka SSH, Kumar SK, Kumar SP (2022) Review on phase change materials for solar energy storage applications. Environ Sci Pollut Res 29:9491–9532. https://doi.org/10.1007/s11356-021-17152-8
Niyas H, Prasad S, Muthukumar P (2017a) Performance investigation of a lab-scale latent heat storage prototype – numerical results. Energy Conv Manag 135:188–199
Niyas H, Rao CRC, Muthukumar P (2017) Performance investigation of a lab-scale latent heat storage prototype – experimental results. Sol Energy 155:971–984. https://doi.org/10.1016/j.solener.2017.07.044
Pirasaci T, Goswami DY (2016) Influence of design on performance of a latent heat storage system for a direct steam generation power plant. Appl Energy 162:644–652. https://doi.org/10.1016/j.apenergy.2015.10.105
Pizzolato A, Sharma A, Ge R, Maute K, Verda V, Sciacovelli A (2019) Maximization of performance in multi-tube latent heat storage – optimization of fins topology, effect of materials selection and flow arrangements. Energy. https://doi.org/10.1016/j.energy.2019.02.155
Rathod MK, Banerjee J (2015) Thermal performance enhancement of shell and tube latent heat storage unit using longitudinal fins. Appl Therm Eng 75:1084–1092
Rubitherm Technologies GmbH (2022) RT 60 Data Sheet, https://www.rubitherm.eu/en/index.php/productcategory/organische-pcm-rt, Accessed 26 November 2022
Seddegh S, Wang X, Henderson AD, Xing Z (2015) Solar domestic hot water systems using latent heat energy storage medium: a review. Renew Sust Energ Rev 49:517–533
Seddegh S, Wang X, Henderson AD (2016) A comparative study of thermal behaviour of a horizontal and vertical shell-and-tube energy storage using phase change materials. Appl Therm Eng 93:348–358. https://doi.org/10.1016/j.applthermaleng.2015.09.107
Seddegh S, Wang X, Joybari MM, Haghighat F (2017) Investigation of the effect of geometric and operating parameters on thermal behavior of vertical shell-and-tube latent heat energy storage systems. Energy 137:69–82
Seddegh S, Tehrani SSM, Wang X, Cao F, Taylor RA (2018) Comparison of heat transfer between cylindrical and conical vertical shell-and-tube latent heat thermal energy storage systems. Appl Therm Eng 130:1349–1362
Shen G, Wang X, Chan A (2019a) Experimental investigation of heat transfer characteristics in a vertical multi-tube latent heat thermal energy storage system. Energy Procedia 160:332–339. https://doi.org/10.1016/j.egypro.2019.02.165
Shen G, Wang X, Chan A, Cao F, Yin X (2019b) Study of the effect of tilting lateral surface angle and operating parameters on the performance of a vertical shell-and-tube latent heat energy storage system. Sol Energy 194:103–113. https://doi.org/10.1016/j.solener.2019.10.077
Shen G, Wang X, Chan A, Cao F, Yin X (2020) Investigation on optimal shell-to-tube radius ratio of a vertical shell-and-tube latent heat energy storage system. Sol Energy 211:732–743. https://doi.org/10.1016/j.solener.2020.10.003
Shukla A, Buddhi D, Sawhney RL (2009) Solar water heaters with phase change material thermal energy storage medium: A review. Renew Sust Energ Rev 13:2119–2125. https://doi.org/10.1016/j.rser.2009.01.024
Tehrani SSM, Taylor RA, Saberi P, Diarce G (2016) Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants. Renew Energy 96:120–136
Trp A, Lenic K, Frankovic B (2006) Analysis of the influence of operating conditions and geometric parameters on heat transfer in water-paraffin shell-and-tube latent thermal energy storage unit. Appl Therm Eng 26:1830–1839
Yusuf Yazıcı M, Avcı M, Aydın O, Akgun M (2014) Effect of eccentricity on melting behavior of paraffin in a horizontal tube-in-shell storage unit: an experimental study. Sol Energy 101:291–298. https://doi.org/10.1016/j.solener.2014.01.007