Experimental investigation of UAV rotor aeroacoustics and aerodynamics with computational cross-validation
CEAS Aeronautical Journal - Trang 1-16 - 2023
Tóm tắt
The study provided a base of comparison of known computational techniques with different fidelity levels for performance and noise prediction of a single, fixed-pitch UAV rotor operating with varying flight parameters. The range of aerodynamic tools included blade element theory, potential flow methods (UPM, RAMSYS), lifting-line method (PUMA) and Navier–Stokes solver (FLOWer). Obtained loading distributions served as input for aeroacoustic codes delivering noise estimation for the blade passing frequency on a plane below the rotor. The resulting forces and noise levels showed satisfactory agreement with experimental data; however, differences in accuracy could be noticed depending on the computational method applied. The wake influence on the results was estimated based on vortex trajectories from simulations and those visible in background-oriented schlieren (BOS) pictures. The analysis of scattering effects showed that influence of ground and rotor platform on aeroacoustic results was observable even for low frequencies.
Tài liệu tham khảo
Theys, B., Dimitriadis, G., Hendrick, P., De Schutter, J.: Experimental and numerical study of micro-aerial-vehicle propeller performance in oblique flow. J. Aircr. (2017). https://doi.org/10.2514/1.C033618
Yang, Y., Liu, Y., Li, Y., Acrondoulis, E.: Aerodynamic and aeroacoustic performance of an isolated multicopter rotor during forward flight. AIAA J. (2020). https://doi.org/10.2514/1.J058459
Gur, O., Rosen, A.: Design of a quiet propeller for an electric mini unmanned vehicle. J. Propuls. Power (2009). https://doi.org/10.2514/1.38814
Ning, Z., Hu, H.: An experimental study on the aerodynamic and aeroacoustic performances of a bio-inspired UAV propeller. AIAA Aviation Forum (2017). https://doi.org/10.2514/6.2017-3747
Ning, Z., Hu, H.: An experimental study on the aerodynamics and aeroacoustic characteristics of small propellers. AIAA Sci. Technol. Forum Exposition (2016). https://doi.org/10.2514/6.2016-1785
Deters, R.W., Kleinke, S.: Static Testing of Propulsion Elements for Small Multirotor Unmanned Aerial Vehicles. 35th AIAA Applied Aerodynamics Conference (2017). https://doi.org/10.2514/6.2017-3743
Weitsman, D., Greenwood, E.: Parametric study of eVTOL rotor acoustic design trades. AIAA Scitech Forum (2021). https://doi.org/10.2514/6.2021-1987
Gur, O., Rosen, A.: Comparison between blade-element models of propellers. Aeronaut. J. (2008). https://doi.org/10.1017/S0001924000002669
Krebs, T., Bramesfeld, G., Cole, J.: Transient thrust analysis of rigid rotors in forward flight. Aerospace (2022). https://doi.org/10.3390/aerospace9010028
Deters, R.W., Ananda, G.K., Selig, M.S.: Reynolds Number Effects on the Performance of Small-Scale Propellers. 32nd AIAA Applied Aerodynamics Conference (2014). https://doi.org/10.2514/6.2014-2151
Gur, O., Rosen, A.: Propeller performance at low advance ratio. J. Aircr. (2005). https://doi.org/10.2514/1.6564
McCrink, M.H., Gregory, J.W.: Blade Element Momentum Modelling of Low-Re Small UAS Electric Propulsion Systems. 33rd AIAA Applied Aerodynamics Conference (2015). https://doi.org/10.2514/1.C033622
Grande, E., et al.: Aeroacoustic investigation of a propeller operating at low Reynolds numbers. AIAA J. (2022). https://doi.org/10.2514/1.J060611
Candeloro, P., Ragni, D., Pagliaroli, T.: Small-scale rotor aeroacoustics for drone propulsion: a review of noise sources and control strategies. Fluids 7, 279 (2022). https://doi.org/10.3390/fluids7080279
Bergmann, O., Götten, F., Braun, C., Janser, F.: Comparison and evaluation of blade element methods against RANS simulations and test data. CEAS Aeronaut. J. 13, 535–557 (2022). https://doi.org/10.1007/s13272-022-00579-1
Niemiec, R., Gandhi, F.: Effects of Inflow Model on Stimulated Aeromechanics of a Quadrotor Helicopter. AHS 72nd Annual Forum (2016)
Cerny, M., Herzog, N., Faust, J., Stuhlpfarrer, M., Breitsamer, C.: Systematic Investigation of a Fixed-pitch Small-scale Propeller under Non-axial Inflow Conditions. Deutscher Luft- und Raumfahrtkongress (2018)
Leishman, J.G.: Principles of helicopter aerodynamics, 2nd edn. Cambridge University Press (2006)
Tan, J., Wang, H.: Simulating unsteady aerodynamics of helicopter rotor with panel/viscous vortex particle method. Aerospace Science and Technology 30, 255–268 (2013). https://doi.org/10.1016/j.ast.2013.08.010
Theys, B., Dimitriadis, G., Andrianne, T., Hendrick, P., De Schutter, J.: Wind Tunnel Testing of a VTOL MAV Propeller in Tilted Operating Mode. International Conference on Unmanned Aircraft Systems (2014). https://doi.org/10.1109/ICUAS.2014.6842358
Kolaei, A., Barcelos, D., Bramesfeld, G.: Experimental analysis of small-scale rotor at various inflow angles. International Journal of Aerospace Engineering (2018). https://doi.org/10.1155/2018/2560370
Lößle, F., Kostek, A., Schmid, R.: Experimental measurement of a UAV rotor’s acoustic emission. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Vol. (2020). https://doi.org/10.1007/978-3-030-79561-0_37
Lößle, F., Kostek, A.A., Schwarz, C., Schmid, R., Gardner, A.D., Raffel, M.: Aerodynamics of Small Rotors in Hover and Forward Flight. 48th European Rotorcraft Forum, Winterthur, Switzerland (2022)
Abbott, I.H., von Doenhoff, A.E., Stivers, Jr. L.S.: Summary of Airfoil Data. Report Np.824, National Advisory Committee for Aeronautics (1945)
Chen, R.T.N.: A Survey of Non-uniform Inflow Models for Rotorcraft Flight Dynamics and Control Applications. NASA Technical Memorandum 102219. (1989)
Pitt, D.M., Peters, D.A.: Theoretical prediction of dynamic-inflow derivatives. Vertica 5(1), 21–34 (1981)
Mahmuddin, F., Klara, S., Sitepu, H., Hariyanto, S.: Airfoil lift and drag extrapolation with viterna and montgomerie methods. Energy Procedia 105, 811–816 (2017). https://doi.org/10.1016/j.egypro.2017.03.394
Branlard, E.: Tip-losses with Focus on Prandtl’s Tip Loss Factor. Wind Turbine Aerodynamics and Vorticity-Based Methods (pp.227-245) (2017). https://doi.org/10.1007/978-3-319-55164-7_13
Johnson, W.: Helicopter theory. Dover Publications Inc, New York (1980)
Ahmed, S.R., Vidjaja, V.T.: Unsteady panel method calculation of pressure distribution on BO 105 model rotor blades. J. Am. Helicopter Soc. 43(1), 47–56 (1998). https://doi.org/10.4050/JAHS.43.47
Yin, J., Ahmed, S.R.: Helicopter main-rotor/tail-rotor interaction. J. Am. Helicopter Soc. 45(4), 293–302 (2000). https://doi.org/10.4050/JAHS.45.293
Winckelman, G.S., Leonard, A.: Contributions to vortex particle methods for the computation of three-dimensional incompressible unsteady flows. J. Comput. Phys. 109, 247–273 (1993). https://doi.org/10.1006/jcph.1993.1216
Wilke, G., et al.: Prediction of Acoustic Far Field with DLR’s Acoustic Code APSIM+. (2019)
Mudry, M.: La théorie des nappes tourbillonnaires et ses applications à l’aérodynamique instationnaire, PhD thesis, University of Paris VI (1982)
Leishman, J.G., Beddoes, T.S.: A semi-empirical model for dynamic stall. J. Am. Helicopter Soc. 34, 3–17 (1986). https://doi.org/10.4050/JAHS.34.3.3
Tran, C.T., Petot, D.: Semi-empirical model for the dynamic stall of airfoils in view of the application to the calculation of responses of a helicopter blade in forward flight. Vertica 5, 35–53 (1981)
Gallas, Q., Boisard, R., Monnier, J.-C., Pruvost, J., Giliot, A.: Experimental and numerical investigation of the aerodynamic interactions between a hovering helicopter and surrounding obstacles. 43nd European rotorcraft Forum, Milan, Italy (2017). https://doi.org/10.1177/0954410014550501
Boisard, R.: Aerodynamic investigation of a helicopter rotor hovering in the vicinity of a building. 74th AHS forum, Phoenix, Arizona, USA (2018)
Boisard, R.: Numerical analysis of rotor / propeller aerodynamic interactions on a high speed compound helicopter. J. Am. Helicopter Soc. 67(1), 1–15 (2022). https://doi.org/10.4050/JAHS.67.012005
Prieur, J., Rahier, G.: Comparison of the Ffowcs Williams-Hawkings and Kirchhoff rotor noise calculations. 4th AIAA/CEAS Aeroacoustics Conference, Toulouse (1998). https://doi.org/10.2514/6.1998-2376
Rahier, G., Prieur, J.: An efficient Kirchhoff integration method for rotor noise prediction starting indifferently from subsonically or supersonically rotating meshes. 53rd AHS Annual Forum, Virginia Beach, USA (1997)
Kroll, N., Eisfeld, B., Bleecke, H. M.: The Navier-Stokes code FLOWer. In: Schuller A. (Ed.), Portable Parallelization of Industrial Aerodynamic Applications (POPINDA), Notes on Numerical Fluid Mechanics, Vol. 71, pp. 58-71 (1991)
Kowarsch, U., Oehrle, C., Hollands, M., Keßler, M., Krämer, E.: Computation of Helicopter Phenomena Using a Higher Order Method. In: Nagel W. E., Kröner D. H., Resch M. M., High Performance Computing in Science and Engineering ’13, pp. 423-438 (2013) https://doi.org/10.1007/978-3-319-02165-2_29
Keßler, M., Wagner, S.: Source-time dominant aeroacoustics. Comput. Fluids 33(5–6), 791–800 (2004). https://doi.org/10.1016/j.compfluid.2003.06.012
Dürrwächter, L., Keßler, M., Krämer, E.: Numerical assessment of open-rotor noise shielding with a coupled approach. AIAA J. (2019). https://doi.org/10.2514/1.J057531
Dürrwächter, L.: Simulation of Installation Effects on Open-Rotor Acoustics with a Coupled Numerical Tool Chain. PhD thesis. University of Stuttgart (2020)
Visingardi, A., D’Alascio, A., Pagano, A., Renzoni, P.: Validation of CIRA’s rotorcraft aerodynamic modelling system with DNW experimental data. 22nd European Rotorcraft Forum, Brighton, UK (1996)
Morino, L.: A General Theory of Unsteady Compressible Potential Aerodynamics. NASA CR-2464 (1974). https://doi.org/10.1007/978-3-662-06153-4_27
Gennaretti, M., Bernardini, G.: Novel boundary integral formulation for blade-vortex interaction aerodynamics of helicopter rotors. AIAA J. 45, 1169–1176 (2007). https://doi.org/10.2514/1.18383
Williams, J. E. F., Hawkings, D. L.: Sound generation by turbulence and surfaces in arbitrary motion. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 264 (1151) (1969). https://doi.org/10.1098/rsta.1969.0031
Casalino, D.: An advanced time approach for acoustic analogy predictions. J. Sound Vib. (2003). https://doi.org/10.1016/S0022-460X(02)00986-0
Casalino, D., Barbarino, M., Visingardi, A.: Simulation of helicopter community noise in complex urban geometry. AIAA J. (2011). https://doi.org/10.2514/1.J050774
Barbarino, M., Petrosino, F., Visingardi, A.: A high-fidelity aeroacoustic simulation of a VTOL aircraft in an urban air mobility scenario. Aerosp. Sci. Technol. (2021). https://doi.org/10.1016/j.ast.2021.107104
Barbarino, M., Bianco, D.: A bem-fmm approach applied to the combined convected Helmholtz integral formulation for the solution of aeroacoustic problems. Comput. Methods Appl. Mech. Eng. (2018). https://doi.org/10.1016/j.cma.2018.07.034
Petrosino, F., Barbarino, M., Staggat, M.: Aeroacoustics assessment of an hybrid aircraft configuration with rear-mounted boundary layer ingested engine. Appl. Sci. (2021). https://doi.org/10.3390/app11072936
Maekawa, Z.: Noise reduction by screens. Appl. Acoust. (1968). https://doi.org/10.1016/0003-682X(68)90020-0
Kurze, U.J.: Noise reduction by barriers. J. Acoust. Soc. Am. (1974). https://doi.org/10.1121/1.1914528