Experimental hut evaluation of linalool spatial repellent agar gel against Anopheles gambiae sensu stricto mosquitoes in a semi-field system in Bagamoyo, Tanzania

Parasites and Vectors - Tập 7 - Trang 1-6 - 2014
Mgeni Mohamed Tambwe1, Edgar Mtaki Mbeyela1, Brian Migamyo Massinda1, Sarah Jane Moore1,2,3, Marta Ferreira Maia1,2,3
1Intervention and Environmental Health and Ecological Sciences, Ifakara Health Institute, Bagamoyo, Tanzania
2Swiss Tropical & Public Health Institute, Basel, Switzerland
3University of Basel, Basel, Switzerland

Tóm tắt

Malaria vector control is in need of new tools to face its current challenges such as the spread of pyrethroid-resistance and the increase of outdoor feeding mosquitoes. New strategies such as spatial repellents need to be evaluated as supplemental tools to existing control measures such as insecticide treated bed nets and indoor residual spraying. Linalool is a naturally occurring terpene alcohol commonly found in flowers and spices with reportedly repellent properties. Four experimental huts fitted with exit traps and enclosed inside a large screened semi-field system were used for the evaluation. The tested spatial repellent product consisted of an agar gel emanator containing 73% linalool. Two rounds of experiments using a Latin square design were conducted to evaluate the efficacy of the linalool emanators compared to no treatment (negative control) and a transfluthrin coil (positive) against lab-reared disease free Anopheles gambiae s.s.. The emanators were hung inside experimental huts where two volunteers were sleeping unprotected. The outcome measures were repellency, % feeding inhibition, %mortality and post 24 h % mortality. Unlike the mosquito coil, the linalool emanators did not show any feeding inhibition, repellency or induced mortality compared to the negative control. On the other hand mosquitoes kept for 24 h post exposure were 3 times more likely to die after being exposed to two 73% linalool emanators than the negative control. Our results indicate that linalool agar gel emanators are not adequate as a spatial repellent against Anopheles gambiae s.s.. However adding linalool to known repellent formulations could be advantageous, not only because of its pleasant scent but also because of the delayed mortality effect it has on mosquitoes.

Tài liệu tham khảo

Steketee RW, Campbell CC: Impact of national malaria control scale-up programmes in Africa: magnitude and attribution of effects. Mal J. 2010, 9: 299-10.1186/1475-2875-9-299. The malERA Consultative Group on Vactor: A research agenda for malaria eradication: vector control. PLoS Med. 2011, 8: e1000401-10.1371/journal.pmed.1000401. doi:10.1371/journalpmed.1000401 Hill N, Lenglet A, Arnez AM, Carneiro I: Randomised, double-blind control trial of p-menthane diol repellent against malaria in Bolivia. BMJ. 2007, 355: 1023-10.1136/bmj.39356.574641.55. Rowland M, Downey G, Rab A, Freeman T, Mohammad N, Rehman H, Durrani N, Reyburn H, Curtis C, Lines J, Fayaz M: DEET mosquito repellent provides personal protection against malaria: a household randomized trial in an Afghan refugee camp in Pakistan. Trop Med Int Health. 2004, 9: 335-342. 10.1111/j.1365-3156.2004.01198.x. Curtis CF, Mnzava AE: Comparison of house spraying and insecticide-treated nets for malaria control. Bull World Health Organ. 2000, 78: 1389-1400. WHO: Pesticides and their Application for the Control of Vectors and Pests of Public Health Importance WHO/CDS/NTD/WHOPES/GCDPP/2006.1. 2006, World Health Organization, Geneva Ranson H, N’Guessan R, Lines J, Moiroux N, Nkuni Z, Corbel V: Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control?. Trends Parasitol. 2011, 27: 91-98. 10.1016/j.pt.2010.08.004. N’Guessan R, Corbel V, Akogbeto M, Rowland M: Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Inf Dis. 2007, 13: 199-206. 10.3201/eid1302.060631. Odalo JO, Omolo MO, Malebo H, Angira J, Njeru PM, Ndiege IO, Hassanali A: Repellency of essential oils of some plants from the Kenyan coast against Anopheles gambiae. Acta Trop. 2005, 95: 210-218. 10.1016/j.actatropica.2005.06.007. Dekker T, Ignell R, Ghebru M, Glinwood R, Hopkins R: Identification of mosquito repellent odours from Ocimum forskolei. Parasit Vectors. 2011, 4: 183-10.1186/1756-3305-4-183. Park BS, Choi WS, Kim JH, Kim KH, Lee SE: Monoterpenes from thyme (Thymus vulgaris) potential mosquito repellents. J Am Mosq Control Assoc. 2005, 21: 80-83. 10.2987/8756-971X(2005)21[80:MFTTVA]2.0.CO;2. Syed Z, Leal WS: Mosquitoes smell and avoid the insect repellent DEET. Proc Natl Acad Sci U S A. 2008, 105: 13598-13603. 10.1073/pnas.0805312105. Kline DL, Bernier UR, Posey KH, Barnard DR: Olfactometric evaluation of spatial repellents for Aedes aegypti. J Med Entomol. 2003, 40: 463-467. 10.1603/0022-2585-40.4.463. Muller GC, Junnila A, Kravchenko VD, Revay EE, Butler J, Orlova OB, Weiss RW, Schlein Y: Ability of essential oil candles to repel biting insects in high and low biting pressure environments. J Am Mosq Control Assoc. 2008, 24: 154-160. 10.2987/8756-971X(2008)24[154:AOEOCT]2.0.CO;2. Ferguson HM, Ng’habi KR, Walder T, Kadungula D, Moore SJ, Lyimo I, Russell TL, Urassa H, Mshinda H, Killeen GF, Knols BG: Establishment of a large semi-field system for experimental study of African malaria vector ecology and control in Tanzania. Malar J. 2008, 7: 158-10.1186/1475-2875-7-158. Maia MF, Robinson A, John A, Mgando J, Simfukwe E, Moore SJ: Comparison of the CDC Backpack aspirator and the Prokopack aspirator for sampling indoor- and outdoor-resting mosquitoes in southern Tanzania. Parasit Vectors. 2011, 4: 124-10.1186/1756-3305-4-124. Muller GC, Junnila A, Butler J, Kravchenko VD, Revay EE, Weiss RW, Schlein Y: Efficacy of the botanical repellents geraniol, linalool, and citronella against mosquitoes. J Vector Ecol. 2009, 34: 2-8. 10.1111/j.1948-7134.2009.00002.x. Maia MF, Moore SJ: Plant-based insect repellents: a review of their efficacy, development and testing. Malar J. 2011, 10 (Suppl 1): S11-10.1186/1475-2875-10-S1-S11. Ryan MF, Bryan O: Plant -insect co-evolution and inhibition of acetyl cholinesterase. J Chem Ecol. 1998, 14: 1965-1975. 10.1007/BF01013489.