Experimental evaluation of methodologies for single transient cavitation bubble generation in liquids

Experiments in Fluids - Tập 62 - Trang 1-28 - 2021
Darjan Podbevšek1, Žiga Lokar1, Jure Podobnikar1, Rok Petkovšek1, Matevž Dular1
1Faculty of Mechanical Engineering,, University of Ljubljana,, Ljubljana,, Slovenia

Tóm tắt

Single bubble dynamics are of fundamental importance for understanding the underlying mechanisms in liquid–vapor transition phenomenon known as cavitation. In the past years, numerous studies were published and results were extrapolated from one technique to another and further on to “real-world” cavitation. In the present paper, we highlight the issues of using various experimental approaches to study the cavitation bubble phenomenon and its effects. We scrutinize the transients bubble generation mechanisms behind tension-based and energy deposition-based techniques and overview the physics behind the bubble production. Four vapor bubble generation methods, which are most commonly used in single bubble research, are directly compared in this study: the pulsed laser technique, a high- and low-voltage spark discharge and the tube arrest method. Important modifications to the experimental techniques are implemented, demonstrating improvement of the bubble production range, control and repeatability. Results are compared to other similar techniques from the literature, and an extensive report on the topic is given in the scope of this work. Simple-to-implement techniques are presented and categorized herein, in order to help with future experimental design. Repeatability and sphericity of the produced bubbles are examined, as well as a comprehensive overview on the subject, listing the bubble production range and highlighting the attributes and limitation for the transient cavitation bubble techniques.

Tài liệu tham khảo

Akhatov I, Lindau O, Topolnikov A et al (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13:2805–2819. https://doi.org/10.1063/1.1401810 Andersen A, Mørch KA (2015) Cavitation nuclei in water exposed to transient pressures. J Fluid Mech 771:424–448. https://doi.org/10.1017/jfm.2015.185 Ando K, Liu A-Q, Ohl C-D (2012) Homogeneous nucleation in water in microfluidic channels. Phys Rev Lett 109:044501. https://doi.org/10.1103/PhysRevLett.109.044501 Arora M, Ohl CD, Lohse D (2007) Effect of nuclei concentration on cavitation cluster dynamics. J Acoust Soc Am 121:3432–3436. https://doi.org/10.1121/1.2722045 Askar’yan GA, Prokhorov AM, Chantuviya GF, Shipulo GP (1963) The effects of a laser beam in a liquid. J Exp Theor Phys 17:1463 Atrazhev VM, Vorob’ev VS, Timoshkin IV, et al (2010) Mechanisms of impulse breakdown in liquid: the role of joule heating and formation of gas cavities. IEEE Trans Plasma Sci 38:2644–2651. https://doi.org/10.1109/TPS.2010.2046337 Avila SRG, Song C, Ohl C-D (2015) Fast transient microjets induced by hemispherical cavitation bubbles. J Fluid Mech 767:31–51. https://doi.org/10.1017/jfm.2015.33 Azouzi MEM, Ramboz C, Lenain J-F, Caupin F (2013) A coherent picture of water at extreme negative pressure. Nat Phys 9:38–41. https://doi.org/10.1038/nphys2475 Baird MHI (1963) Resonant bubbles in a vertically vibrating liquid column. Can J Chem Eng 41:52–55. https://doi.org/10.1002/cjce.5450410204 Barbaglia MO, Bonetto FJ (2004) Dependence on liquid temperature and purity of light emission characteristics in single cavitation bubble luminescence. J Appl Phys 95:1756–1759. https://doi.org/10.1063/1.1637711 Bergant A, Simpson AR, Tijsseling AS (2006) Water hammer with column separation : a historical review. J Fluids Struct 22:135–171. https://doi.org/10.1016/j.jfluidstructs.2005.08.008 Brennen CE (1995) Cavitation and Bubble Dynamics. Oxford University Press, New York Briggs LJ (1950) Limiting negative pressure of water. J Appl Phys 21:721–722. https://doi.org/10.1063/1.1699741 Bruggeman PJ, Kushner MJ, Locke BR et al (2016) Plasma–liquid interactions: a review and roadmap. Plasma Sources Sci Technol 25:053002. https://doi.org/10.1088/0963-0252/25/5/053002 Brujan E-A (2008) Shock wave emission from laser-induced cavitation bubbles in polymer solutions. Ultrasonics 48:423–426. https://doi.org/10.1016/j.ultras.2008.02.001 Brujan E-A, Vogel A (2006) Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom. J Fluid Mech 558:281–308. https://doi.org/10.1017/S0022112006000115 Buchanan RH, Jameson G, Oedjoe D (1962) Cyclic migration of bubbles in vertically vibrating liquid columns. Ind Eng Chem Fundam 1:82–86. https://doi.org/10.1021/i160002a003 Buogo S, Cannelli GB (2002) Implosion of an underwater spark-generated bubble and acoustic energy evaluation using the Rayleigh model. J Acoust Soc Am 111:2594–2600. https://doi.org/10.1121/1.1476919 Buogo S, Plocek J, Vokurka K (2009) Efficiency of Energy Conversion in Underwater Spark Discharges and Associated Bubble Oscillations: Experimental Results. https://www.ingentaconnect.com/content/dav/aaua/2009/00000095/00000001/art00004. Accessed 23 May 2019 Cannelli GB, D’Ottavi E, Prosperetti A (1990) Bubble Activity Induced By High-power Marine Sources. In: Conference Proceedings on Engineering in the Ocean Environment. pp 533–537 Caupin F, Herbert E (2006) Cavitation in water: a review. Comptes Rendus Phys 7:1000–1017. https://doi.org/10.1016/j.crhy.2006.10.015 Chen Q-D, Wang L (2005) Luminescence from transient cavitation bubbles in water. Phys Lett A 339:110–117. https://doi.org/10.1016/j.physleta.2005.03.029 Chen Q, Li J, Li Y (2015) A review of plasma–liquid interactions for nanomaterial synthesis. J Phys Appl Phys 48:424005. https://doi.org/10.1088/0022-3727/48/42/424005 Chesterman WD (1952) The dynamics of small transient cavities. Proc Phys Soc Sect B 65:846–858. https://doi.org/10.1088/0370-1301/65/11/302 Chong-Fu Y, Chao L, De-Long X, Jing-Jun D (2008) The pressure field in the liquid column in the tube-arrest method. Chin Phys B 17:2580–2589. https://doi.org/10.1088/1674-1056/17/7/040 Crum LA (2015) Resource paper: sonoluminescence. J Acoust Soc Am 138:2181–2205. https://doi.org/10.1121/1.4929687 Daily J, Pendlebury J, Langley K et al (2014) Catastrophic cracking courtesy of quiescent cavitation. Phys Fluids 26:091107. https://doi.org/10.1063/1.4894073 Dijkink R, Ohl C-D (2008) Laser-induced cavitation based micropump. Lab Chip 8:1676–1681. https://doi.org/10.1039/b806912c Dular M, Coutier-Delgosha O (2013) Thermodynamic effects during growth and collapse of a single cavitation bubble. J Fluid Mech 736:44–66. https://doi.org/10.1017/jfm.2013.525 Dular M, Petkovšek M (2015) New insights into the mechanisms of cavitation erosion. J Phys Conf Ser 656:012046. https://doi.org/10.1088/1742-6596/656/1/012046 Dular M, Griessler-Bulc T, Gutierrez-Aguirre I et al (2016) Use of hydrodynamic cavitation in (waste)water treatment. Ultrason Sonochem 29:577–588. https://doi.org/10.1016/j.ultsonch.2015.10.010 Dular M, Požar T, Zevnik J, Petkovšek R (2019) High speed observation of damage created by a collapse of a single cavitation bubble. Wear 418–419:13–23. https://doi.org/10.1016/j.wear.2018.11.004 F.R.S LROM, (1917) VIII. On the pressure developed in a liquid during the collapse of a spherical cavity. Lond Edinb Dublin Philos Mag J Sci 34:94–98. https://doi.org/10.1080/14786440808635681 Fong SW, Adhikari D, Klaseboer E, Khoo BC (2009) Interactions of multiple spark-generated bubbles with phase differences. Exp Fluids 46:705–724. https://doi.org/10.1007/s00348-008-0603-4 Fry LH, Adair P, Williams R (1999) Long life sparker for pulse powered underwater acoustic transducer. In: Digest of Technical Papers. 12th IEEE International Pulsed Power Conference. (Cat. No.99CH36358). pp 781–784 vol.2 Fujikawa S, Akamatsu T (1978) Experimental investigations of cavitation bubble collapse by a water shock tube. JSME Int J Ser B 21:223–230 Futakawa M, Naoe T, Kogawa H et al (2014) Cavitation erosion induced by proton beam bombarding mercury target for high-power spallation neutron sources. Exp Therm Fluid Sci 57:365–370. https://doi.org/10.1016/j.expthermflusci.2014.05.014 Gągol M, Przyjazny A, Boczkaj G (2018) Wastewater treatment by means of advanced oxidation processes based on cavitation–A review. Chem Eng J. https://doi.org/10.1016/j.cej.2018.01.049 Goh BHT, Oh YDA, Klaseboer E et al (2013) A low-voltage spark-discharge method for generation of consistent oscillating bubbles. Rev Sci Instrum 84:014705. https://doi.org/10.1063/1.4776187 Gong SW, Goh BHT, Ohl SW, Khoo BC (2012) Interaction of a spark-generated bubble with a rubber beam: numerical and experimental study. Phys Rev E 86:026307. https://doi.org/10.1103/PhysRevE.86.026307 Gonzalez-Avila SR, van Blokland AC, Zeng Q, Ohl C-D (2020) Jetting and shear stress enhancement from cavitation bubbles collapsing in a narrow gap. J Fluid Mech. https://doi.org/10.1017/jfm.2019.938 Grieser F, Choi P-K, Enomoto N et al (2015) Sonochemistry and the acoustic bubble. Elsevier Hamdan A, Čerņevičs K, Cha MS (2017) The effect of electrical conductivity on nanosecond discharges in distilled water and in methanol with argon bubbles. J Phys Appl Phys 50:185207. https://doi.org/10.1088/1361-6463/aa6969 Harrison M (1952) An experimental study of single bubble cavitation noise. J Acoust Soc Am 24:776–782. https://doi.org/10.1121/1.1906978 Hellman AN, Rau KR, Yoon HH et al (2007) Laser-induced mixing in microfluidic channels. Anal Chem 79:4484–4492. https://doi.org/10.1021/ac070081i Horikoshi S, Serpone N (2017) In-liquid plasma: a novel tool in the fabrication of nanomaterials and in the treatment of wastewaters. RSC Adv 7:47196–47218. https://doi.org/10.1039/C7RA09600C Horvat D, Orthaber U, Schille J et al (2018) Laser-induced bubble dynamics inside and near a gap between a rigid boundary and an elastic membrane. Int J Multiph Flow 100:119–126. https://doi.org/10.1016/j.ijmultiphaseflow.2017.12.010 Huang Y, Yan H, Wang B et al (2014) The electro-acoustic transition process of pulsed corona discharge in conductive water. J Phys Appl Phys 47:255204. https://doi.org/10.1088/0022-3727/47/25/255204 Huang Y, Zhang L, Zhang X et al (2015) Electroacoustic process study of plasma sparker under different water depth. IEEE J Ocean Eng 40:947–956. https://doi.org/10.1109/JOE.2014.2382451 Ikeda T, Yoshizawa S, Koizumi N et al (2016) Focused Ultrasound and Lithotripsy. In: Escoffre J-M, Bouakaz A (eds) Therapeutic Ultrasound. Springer International Publishing, Cham, pp 113–129 Iosilevskii G, Weihs D (2008) Speed limits on swimming of fishes and cetaceans. J R Soc Interface 5:329–338. https://doi.org/10.1098/rsif.2007.1073 Jiang B, Zheng J, Qiu S et al (2014) Review on electrical discharge plasma technology for wastewater remediation. Chem Eng J 236:348–368. https://doi.org/10.1016/j.cej.2013.09.090 Jones WM, Overton GDN, Trevena DH (1981) Tensile strength experiments with water using a new type of Berthelot tube. J Phys Appl Phys 14:1283–1291. https://doi.org/10.1088/0022-3727/14/7/016 Kannan YS, Karri B, Sahu KC (2018) Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble. Phys Fluids 30:041701. https://doi.org/10.1063/1.5025122 Kapahi A, Hsiao C-T, Chahine GL (2015) Shock-induced bubble collapse versus rayleigh collapse. J Phys Conf Ser 656:012128. https://doi.org/10.1088/1742-6596/656/1/012128 Khoo BC, Adikhari D, Fong SW, Klaseboer E (2009) Multiple spark-generated bubble interactions. Mod Phys Lett B 23:229–232. https://doi.org/10.1142/S0217984909018072 Kiyama A, Tagawa Y, Ando K, Kameda M (2015) Effects of a water hammer and cavitation on jet formation in a test tube. J Fluid Mech 787:224–236. https://doi.org/10.1017/jfm.2015.690 Kosel J, Gutiérrez-Aguirre I, Rački N et al (2017) Efficient inactivation of MS-2 virus in water by hydrodynamic cavitation. Water Res 124:465–471. https://doi.org/10.1016/j.watres.2017.07.077 Kudryashov NA, Sinelshchikov DI (2014) Analytical solutions of the Rayleigh equation for empty and gas-filled bubble. J Phys Math Theor 47:405202. https://doi.org/10.1088/1751-8113/47/40/405202 Kudryashov NA, Sinelshchikov DI (2015) Analytical solutions for problems of bubble dynamics. Phys Lett A 379:798–802. https://doi.org/10.1016/j.physleta.2014.12.049 Lajoinie G, De Cock I, Coussios CC et al (2016) In vitro methods to study bubble-cell interactions: fundamentals and therapeutic applications. Biomicrofluidics. https://doi.org/10.1063/1.4940429 Lam J, Lombard J, Dujardin C et al (2016) Dynamical study of bubble expansion following laser ablation in liquids. Appl Phys Lett 108:074104. https://doi.org/10.1063/1.4942389 Lazic V, Jovićević S (2014) Laser induced breakdown spectroscopy inside liquids: processes and analytical aspects. Spectrochim Acta Part B at Spectrosc 101:288–311. https://doi.org/10.1016/j.sab.2014.09.006 Leighton TG (2007) Derivation of the Rayleigh-Plesset Equation in Terms of Volume. University of Southampton Lew KSF, Klaseboer E, Khoo BC (2007) A collapsing bubble-induced micropump: an experimental study. Sens Actuators Phys 133:161–172. https://doi.org/10.1016/j.sna.2006.03.023 Lewis TJ (1994) Basic electrical processes in dielectric liquids. IEEE Trans Dielectr Electr Insul 1:630–643. https://doi.org/10.1109/94.311706 Lewis TJ (1996) New electro-mechanical concepts of the primary mechanisms of electrical breakdown in liquids. In: ICDL’96. 12th International Conference on Conduction and Breakdown in Dielectric Liquids. pp 273–278 Li F, Yuan F, Sankin G et al (2017) A microfluidic system with surface patterning for investigating cavitation bubble(s)-cell interaction and the resultant bioeffects at the single-cell level. J vis Exp JoVE. https://doi.org/10.3791/55106 Liu X, Hou Y, Liu X et al (2011) Oscillation characteristics of a laser-induced cavitation bubble in water at different temperatures. Optik 122:1254–1257. https://doi.org/10.1016/j.ijleo.2010.08.010 Liu X, Long Z, He J et al (2013) Experimental study of temperature effect on the growth and collapse of cavitation bubbles near a rigid boundary. Optoelectron Lett 9:317–320. https://doi.org/10.1007/s11801-013-2422-y Locke B (2012) Environmental applications of electrical discharge plasma with liquid water-A mini review. Int J Plasma Environ Sci Technol 6:194–203 Luo X, Ji B, Tsujimoto Y (2016) A review of cavitation in hydraulic machinery. J Hydrodyn Ser B 28:335–358. https://doi.org/10.1016/S1001-6058(16)60638-8 Luo J, Xu W, Deng J et al (2018) Experimental study on the impact characteristics of cavitation bubble collapse on a wall. Water 10:1262. https://doi.org/10.3390/w10091262 Mancas SC, Rosu HC (2016) Evolution of spherical cavitation bubbles: parametric and closed-form solutions. Phys Fluids 28:022009. https://doi.org/10.1063/1.4942237 Mellen RH (1956) An experimental study of the collapse of a spherical cavity in water. J Acoust Soc Am 28:447–454. https://doi.org/10.1121/1.1908354 Mohammadzadeh M, Gonzalez-Avila SR, Wan YC et al (2016) Photoacoustic shock wave emission and cavitation from structured optical fiber tips. Appl Phys Lett 108:024101. https://doi.org/10.1063/1.4939511 Nikitenko SI, Pflieger R (2017) Toward a new paradigm for sonochemistry: short review on nonequilibrium plasma observations by means of MBSL spectroscopy in aqueous solutions. Ultrason Sonochem 35:623–630. https://doi.org/10.1016/j.ultsonch.2016.02.003 Obreschkow D, Bruderer M, Farhat M (2012) Analytical approximations for the collapse of an empty spherical bubble. Phys Rev E Stat Nonlin Soft Matter Phys 85:066303. https://doi.org/10.1103/PhysRevE.85.066303 Oguri R, Ando K (2018) Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel. Phys Fluids 30:051904. https://doi.org/10.1063/1.5026713 Ohl CD (2002a) Cavitation inception following shock wave passage. Phys Fluids 14:3512–3521. https://doi.org/10.1063/1.1503351 Ohl C-D (2002b) Probing luminescence from nonspherical bubble collapse. Phys Fluids 14:2700–2708. https://doi.org/10.1063/1.1489682 Ohl CD, Ikink R (2003) Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett 90:214502. https://doi.org/10.1103/PhysRevLett.90.214502 Orthaber U, Zevnik J, Petkovšek R, Dular M (2020) Cavitation bubble collapse in a vicinity of a liquid-liquid interface–basic research into emulsification process. Ultrason Sonochem 68:105224. https://doi.org/10.1016/j.ultsonch.2020.105224 Overton GDN, Edwards MJ, Trevena DH (1982) Dissolved gas content and the static breaking tension of water. J Phys Appl Phys 15:L129–L131. https://doi.org/10.1088/0022-3727/15/10/003 Overton GDN, Williams PR, Trevena DH (1984) The influence of cavitation history and entrained gas on liquid tensile strength. J Phys Appl Phys 17:979–987. https://doi.org/10.1088/0022-3727/17/5/012 Padilla-Martinez JP, Berrospe-Rodriguez C, Aguilar G et al (2014) Optic cavitation with CW lasers: a review. Phys Fluids 26:122007. https://doi.org/10.1063/1.4904718 Pain A, Hui Terence Goh B, Klaseboer E et al (2012) Jets in quiescent bubbles caused by a nearby oscillating bubble. J Appl Phys 111:054912. https://doi.org/10.1063/1.3692749 Pan Z, Kiyama A, Tagawa Y et al (2017) Cavitation onset caused by acceleration. Proc Natl Acad Sci U S A 114:8470–8474. https://doi.org/10.1073/pnas.1702502114 Patek SN, Caldwell RL (2005) Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. J Exp Biol 208:3655–3664. https://doi.org/10.1242/jeb.01831 Podbevsek D, Colombet D, Ledoux G, Ayela F (2018) Observation of chemiluminescence induced by hydrodynamic cavitation in microchannels. Ultrason Sonochem 43:175–183. https://doi.org/10.1016/j.ultsonch.2018.01.004 Podbevšek D, Colombet D, Ayela F, Ledoux G (2021) Localization and quantification of radical production in cavitating flows with luminol chemiluminescent reactions. Ultrason Sonochem 71:105370. https://doi.org/10.1016/j.ultsonch.2020.105370 Pongrác B, Šimek M, Ondáč P et al (2019) Velocity of initial propagation of positive nanosecond discharge in liquid water: dependence on high voltage amplitude and water conductivity. Plasma Sources Sci Technol. https://doi.org/10.1088/1361-6595/aae91f Prosperetti A (1982) A generalization of the Rayleigh-Plesset equation of bubble dynamics. Phys Fluids 25:409–410. https://doi.org/10.1063/1.863775 Qi-Dai C, Long W (2004) Production of large size single transient cavitation bubbles with tube arrest method. Chin Phys 13:564–570. https://doi.org/10.1088/1009-1963/13/4/028 Qi-Dai CHEN, WL, CHEN Qi-Dai WL, (2004) Luminescence from Tube-Arrest Bubbles in Pure Glycerin. Chin Phys Lett 21:1822–1824 Qiu X, Bouchiat V, Colombet D, Ayela F (2019) Liquid-phase exfoliation of graphite into graphene nanosheets in a hydrocavitating ‘lab-on-a-chip.’ RSC Adv 9:3232–3238. https://doi.org/10.1039/C8RA05976D Quinto-Su PA, Venugopalan V, Ohl CD (2008) Generation of laser-induced cavitation bubbles with a digital hologram. Opt Express 16:18964–18969. https://doi.org/10.1364/OE.16.018964 Quinto-Su PA, Lim KY, Ohl C-D (2009) Cavitation bubble dynamics in microfluidic gaps of variable height. Phys Rev E Stat Nonlin Soft Matter Phys 80:047301. https://doi.org/10.1103/PhysRevE.80.047301 Quinto-Su PA, Suzuki M, Ohl C-D (2014) Fast temperature measurement following single laser-induced cavitation inside a microfluidic gap. Sci Rep 4:5445. https://doi.org/10.1038/srep05445 Reich S, Schönfeld P, Wagener P et al (2017) Pulsed laser ablation in liquids: impact of the bubble dynamics on particle formation. J Colloid Interface Sci 489:106–113. https://doi.org/10.1016/j.jcis.2016.08.030 Richards BE, Trevena DH, Edwards DH (1980) Cavitation experiments using a water shock tube. J Phys Appl Phys 13:1315–1323. https://doi.org/10.1088/0022-3727/13/7/027 Rodríguez-Rodríguez J, Casado-Chacón A, Fuster D (2014) Physics of beer tapping. Phys Rev Lett 113:214501. https://doi.org/10.1103/PhysRevLett.113.214501 Rond C, Desse JM, Fagnon N et al (2018) Time-resolved diagnostics of a pin-to-pin pulsed discharge in water: pre-breakdown and breakdown analysis. J Phys Appl Phys 51:335201. https://doi.org/10.1088/1361-6463/aad175 Rosselló JM, Urteaga R, Bonetto FJ (2018) A novel water hammer device designed to produce controlled bubble collapses. Exp Therm Fluid Sci 92:46–55. https://doi.org/10.1016/j.expthermflusci.2017.11.016 Sajjadi B, Abdul Aziz AR, Ibrahim S (2015) Mechanistic analysis of cavitation assisted transesterification on biodiesel characteristics. Ultrason Sonochem 22:463–473. https://doi.org/10.1016/j.ultsonch.2014.06.004 Šarc A, Oder M, Dular M (2016) Can rapid pressure decrease induced by supercavitation efficiently eradicate Legionella pneumophila bacteria? Desalination Water Treat 57:2184–2194. https://doi.org/10.1080/19443994.2014.979240 Sato T, Tinguely M, Oizumi M, Farhat M (2013) Evidence for hydrogen generation in laser- or spark-induced cavitation bubbles. Appl Phys Lett 102:074105. https://doi.org/10.1063/1.4793193 Schmid J (1959) Kinematographische Untersuchung der Einzelblasen-Kavitation. https://www.ingentaconnect.com/content/dav/aaua/1959/00000009/00000004/art00006?crawler=true. Accessed 21 Jul 2019 Shima A, Takayama K, Tomita Y, Ohsawa N (1983) Mechanism of impact pressure generation from spark-generated bubble collapse near a wall. AIAA J 21:55–59. https://doi.org/10.2514/3.8027 Sinibaldi G, Occhicone A, Alves Pereira F et al (2019) Laser induced cavitation: plasma generation and breakdown shockwave. Phys Fluids 31:103302. https://doi.org/10.1063/1.5119794 Song WD, Hong MH, Lukyanchuk B, Chong TC (2004) Laser-induced cavitation bubbles for cleaning of solid surfaces. J Appl Phys 95:2952–2956. https://doi.org/10.1063/1.1650531 Stride EP, Coussios CC (2010) Cavitation and contrast: the use of bubbles in ultrasound imaging and therapy. Proc Inst Mech Eng [h] 224:171–191. https://doi.org/10.1243/09544119JEIM622 Su C-K, Camara C, Kappus B, Putterman SJ (2003) Cavitation luminescence in a water hammer: upscaling sonoluminescence. Phys Fluids 15:1457–1461. https://doi.org/10.1063/1.1572493 Sun Y, Gao Y, Yan P, et al (2009) Development of a 20 kJ Sparker for High Resolution Ocean Seismic Survey. Acta Phys Pol A. https://doi.org/10.12693/APhysPolA.115.1059 Sun Y, Timoshkin IV, Given MJ et al (2016) Impulsive discharges in water: acoustic and hydrodynamic parameters. IEEE Trans Plasma Sci 44:2156–2166. https://doi.org/10.1109/TPS.2016.2583066 Sunka P, Babicky V, Clupek M et al (2004) Localized damage of tissues induced by focused shock waves. IEEE Trans Plasma Sci 32:1609–1613. https://doi.org/10.1109/TPS.2004.830965 Supponen O, Obreschkow D, Kobel P et al (2019) Detailed experiments on weakly deformed cavitation bubbles. Exp Fluids 60:33. https://doi.org/10.1007/s00348-019-2679-4 Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683. https://doi.org/10.1146/annurev.physchem.59.032607.093739 Taleyarkhan RP, West CD, Cho JS et al (2002) Evidence for nuclear emissions during acoustic cavitation. Science 295:1868–1873. https://doi.org/10.1126/science.1067589 Timoshkin IV, Fouracre RA, Given MJ, MacGregor SJ (2006) Hydrodynamic modelling of transient cavities in fluids generated by high voltage spark discharges. J Phys Appl Phys 39:4808–4817. https://doi.org/10.1088/0022-3727/39/22/011 Tinguely M, Obreschkow D, Kobel P et al (2012) Energy partition at the collapse of spherical cavitation bubbles. Phys Rev E 86:046315. https://doi.org/10.1103/PhysRevE.86.046315 Trevena DH (1984) Cavitation and the generation of tension in liquids. J Phys Appl Phys 17:2139–2164. https://doi.org/10.1088/0022-3727/17/11/003 Turangan CK, Ong GP, Klaseboer E, Khoo BC (2006) Experimental and numerical study of transient bubble-elastic membrane interaction. J Appl Phys 100:054910. https://doi.org/10.1063/1.2338125 Verhaagen B, Fernández Rivas D (2016) Measuring cavitation and its cleaning effect. Ultrason Sonochem 29:619–628. https://doi.org/10.1016/j.ultsonch.2015.03.009 Vilagrosa A, Chirino E, Peguero-Pina JJ et al (2012) Xylem Cavitation and Embolism in Plants Living in Water-Limited Ecosystems. Plant Responses to Drought Stress. Springer, Berlin, Heidelberg, pp 63–109 Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103:577–644. https://doi.org/10.1021/cr010379n Vogel A, Busch S, Jungnickel K, Birngruber R (1994) Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses. Lasers Surg Med 15:32–43. https://doi.org/10.1002/lsm.1900150106 Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100:148–165. https://doi.org/10.1121/1.415878 Vogel A, Noack J, Nahen K et al (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B 68:271–280. https://doi.org/10.1007/s003400050617 Vokurka K (1988) Evaluation of data from experiments with spark and laser generated bubbles. Czechoslov J Phys 38:35–46. https://doi.org/10.1007/BF01596517 Wang Y, Zaytsev ME, The HL et al (2017) Vapor and Gas-bubble growth dynamics around laser-irradiated, water-immersed plasmonic nanoparticles. ACS Nano 11:2045–2051. https://doi.org/10.1021/acsnano.6b08229 Wang Y, Zaytsev ME, Lajoinie G et al (2018) Giant and explosive plasmonic bubbles by delayed nucleation. Proc Natl Acad Sci 115:7676–7681. https://doi.org/10.1073/pnas.1805912115 Williams PR, Williams RL (2004) Cavitation and the tensile strength of liquids under dynamic stressing. Mol Phys 102:2091–2102. https://doi.org/10.1080/00268970412331292786 Williams PR, Williams RL (2002) Cavitation of liquids under dynamic stressing by pulses of tension. J Phys Appl Phys 35:2222–2230. https://doi.org/10.1088/0022-3727/35/17/321 Williams PR, Williams PM, Brown SWJ (1997a) Pressure waves arising from the oscillation of cavitation bubbles under dynamic stressing. J Phys Appl Phys 30:1197–1206. https://doi.org/10.1088/0022-3727/30/8/007 Williams PR, Williams PM, Brown SWJ (1997b) A technique for studying liquid jets formed by cavitation bubble collapse under shockwaves, near a free surface. J Non-Newton Fluid Mech 72:101–110. https://doi.org/10.1016/S0377-0257(97)00020-7 Williams PR, Williams PM, Brown SWJ (1998) An instrument for studying cavitation phenomena in liquids subjected to tension generatedab initioand by free-surface reflection of compressional waves. Meas Sci Technol 9:976–982. https://doi.org/10.1088/0957-0233/9/6/015 Williams PR, Williams PM, Brown SWJ, Temperley HNV (1999) On the tensile strength of water under pulsed dynamic stressing. Proc R Soc Lond Ser Math Phys Eng Sci 455:3311–3323. https://doi.org/10.1098/rspa.1999.0452 Wu X-M, Ying C-F, Li C (2005) Luminescence of transient single cavitation bubbles in non-aqueous liquids produced by the modified tube-arrest method. Chin Phys 14:999–1005. https://doi.org/10.1088/1009-1963/14/5/025 Xu W, Zhai Y, Luo J et al (2019) Experimental study of the influence of flexible boundaries with different elastic moduli on cavitation bubbles. Exp Therm Fluid Sci 109:109897. https://doi.org/10.1016/j.expthermflusci.2019.109897 Yan Z, Chrisey DB (2012) Pulsed laser ablation in liquid for micro-/nanostructure generation. J Photochem Photobiol C Photochem Rev 13:204–223. https://doi.org/10.1016/j.jphotochemrev.2012.04.004 Yasui K (2018) Acoustic Cavitation. Acoustic Cavitation and Bubble Dynamics. Springer, Cham, pp 1–35 Young FR (1999) Cavitation. Imperial College Press Zaytsev ME, Wang Y, Zhang Y et al (2020) Gas-vapor interplay in plasmonic bubble shrinkage. J Phys Chem C 124:5861–5869. https://doi.org/10.1021/acs.jpcc.9b10675 Zhang LC, Zhu XL, Huang YF et al (2016a) Development of a simple model for predicting the spark-induced bubble behavior under different ambient pressures. J Appl Phys 120:043302. https://doi.org/10.1063/1.4959082 Zhang Z, Wang G, Nie Y, Ji J (2016b) Hydrodynamic cavitation as an efficient method for the formation of sub-100nm O/W emulsions with high stability. Chin J Chem Eng 24:1477–1480. https://doi.org/10.1016/j.cjche.2016.04.011 Zhang Q, Luo J, Zhai Y, Li Y (2018) Improved Instruments and methods for the photographic study of spark-induced cavitation bubbles. Water 10:1683. https://doi.org/10.3390/w10111683 Zhang H, Ren X, Luo C et al (2019) Study on transient characteristics and influencing of temperature on cavitation bubbles in various environments. Optik 187:25–33. https://doi.org/10.1016/j.ijleo.2019.01.076 Zheng Q, Durben DJ, Wolf GH, Angell CA (1991) Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254:829–832. https://doi.org/10.1126/science.254.5033.829 Zupanc M, Kosjek T, Petkovšek M et al (2014) Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrason Sonochem 21:1213–1221. https://doi.org/10.1016/j.ultsonch.2013.10.025 Zupanc M, Pandur Ž, Stepišnik Perdih T et al (2019) Effects of cavitation on different microorganisms: the current understanding of the mechanisms taking place behind the phenomenon. A review and proposals for further research. Ultrason Sonochem 57:147–165. https://doi.org/10.1016/j.ultsonch.2019.05.009 Zwaan E, Le Gac S, Tsuji K, Ohl C-D (2007) Controlled cavitation in microfluidic systems. Phys Rev Lett 98:254501. https://doi.org/10.1103/PhysRevLett.98.254501