Experimental determination of thermal conductivity of three nanofluids and development of new correlations

International Journal of Heat and Mass Transfer - Tập 52 Số 21-22 - Trang 4675-4682 - 2009
Ravikanth S. Vajjha1, Debendra K. Das1
1Department of Mechanical Engineering, University of Alaska, Fairbanks, P.O. Box 755905, Fairbanks, AK 99775-5905, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Eastman, 2001, Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett., 78, 718, 10.1063/1.1341218

Lee, 1999, Measuring thermal conductivity of fluids containing oxide nanoparticles, J. Heat Transfer, 121, 280, 10.1115/1.2825978

Das, 2003, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer, 125, 567, 10.1115/1.1571080

Yu, 2003, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticle Res., 5, 167, 10.1023/A:1024438603801

Wang, 2003, A fractal model for predicting the effective thermal conductivity of liquid suspension of nanoparticles, Int. J. Heat Mass Transfer, 46, 2665, 10.1016/S0017-9310(03)00016-4

Koo, 2004, A new thermal conductivity model for nanofluids, J. Nanoparticle Res., 6, 577, 10.1007/s11051-004-3170-5

Koo, 2005, Laminar nanofluid flow in microheat-sinks, Int. J. Heat Mass Transfer, 48, 2652, 10.1016/j.ijheatmasstransfer.2005.01.029

Murshed, 2005, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Thermal Sci., 44, 367, 10.1016/j.ijthermalsci.2004.12.005

Hamilton, 1962, Thermal conductivity of heterogeneous two-component systems, I and EC Fundamentals, 125, 187, 10.1021/i160003a005

Bruggemen, 1935, Berechnung Verschiedener Physikalischer Konstanten von Heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus Isotropen Substanzen, Ann. Phys. Leipzig, 24, 636, 10.1002/andp.19354160705

Xue, 2005, A model of thermal conductivity of nanofluids with interfacial shells, Chem. Phys., 90, 298

Chon, 2005, Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement, Appl. Phys. Lett., 87, 153107, 10.1063/1.2093936

Liu, 2006, Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transfer, 49, 3028, 10.1016/j.ijheatmasstransfer.2006.02.012

Prasher, 2006, Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids, J. Heat Transfer, 128, 588, 10.1115/1.2188509

Jang, 2007, Effects of various parameters on nanofluid thermal conductivity, J. Heat Transfer, 129, 617, 10.1115/1.2712475

Li, 2008, Transient and steady-state experimental comparison study of effective thermal conductivity of Al2O3/water nanofluids, J. Heat Transfer, 130, 042407, 10.1115/1.2789719

Wang, 2007, Heat transfer characteristics of nanofluids: a review, Int. J. Thermal Sci., 46, 1, 10.1016/j.ijthermalsci.2006.06.010

ASHRAE Handbook, Fundamentals, American Society of Heating, Refrigerating and Air-Conditioning Engineers Inc., Atlanta, GA, 2005.

Alfa Aesar. Available from: <http://www.alfaaesar.com/>, 2007.

Incropera, 1996

Bolz, 2007

Maxwell, 1904

Xuan, 2003, Aggregation structure and thermal conductivity of nanofluids, AIChE J., 49, 1038, 10.1002/aic.690490420

R.S. Vajjha, D.K. Das, Measurement of thermal conductivity of Al2O3 nanofluid and development of a new correlation, in: T. Marbach (Ed.), Proceedings of 40th Heat Transfer and Fluid Mechanics Institute, Sacramento, CA, 2008, p.14.

Yaws, 1977

Experimental Operating and Maintenance Procedures for Thermal Conductivity of Liquids and Gases Unit, P.A. Hilton Ltd., Hampshire, England, 2005.

Coleman, 1999

The Data Acquisition Systems Handbook, Omega Engineering Inc., Stamford, CT, 2005.

Bejan, 1993